
DI 62 457 SPECIFICATION TECHNOLOGY GUIDEBOOK(U) BOEING AEROSPACE 1/3
CO SEATTLE MA D R ADDLEMAN ET AL AUG 85
RADC-TR-85-135 F38602-84-C-B9T3

UNCLASSIFIED F/G 9/2 NL

E/EEE/IEEEI/lI
EllllllEEEllEI
llhlEEEEEEEEEE
EllllEEEEEEEEE
EllEEEEEEEEEEE
ElhlhElhEElllE

-.

N ,

A_.

14, 12.8 11225

lii........... tU........

1 .25 L.4 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOUFOS 1963-A

V~3
A~"-

......

I~M ArFm Base My131w70

12 0-

"." S1l

R-A~~~~~~~~ ~ ~ ~ ~ ~ ~ T.-0 W .' ,,',.'l , ,! i4 - ,i17

.R.; -*

..,.

A-. <A

''k

r if to beish to *d frm the RADC
r'f;,*-"tww"-J nolonger euploed by youroraiton

GIVffim PSNY13441-3700. -This Will aSeitUSi

00 not return ao"a Of" this report mumes ecutractui obligations or notices
an a specific doecu0It requires that'it be returned.

o.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE -A 1 4 51

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2a SECURITY CLASSIFICATIC 4 AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF. REPORT
N/A Approved for public release; distribution

-" 2b DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.

N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N / A RADC-TR-85-135

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Boeing Aerospace Company Rome Air Development Center (COEE)

*6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

P.O. Box 3999 Griffiss AFB NY 13441-5700
Seattle WA 98124

8a NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) 2

Rome Air Development Center COEE F30602-84-C-0073

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITGriffiss AFB NY 13441-5700 ELEMENT NO. NO. NO. ACCESSION NO.

62702F 5581 22 13
11 TITLE (Include Security Classification)

• SPECIFICATION TECHNOLOGY GUIDEBOOK

12 PERSONAL AUTHOR(S)
David R. Addleman, Margaret J. Davis, P. Edward Presson

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Day) 5 PAGE COUNT
Final IFROM mar 84 TO Mar 851 August 1985 242

16. SUPPLEMENTARY NOTATION

N/A

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Software Specification Methodology Guidelines

09 02 Software Specification Tools

Software Requirements Methodology, (See Reverse)
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The specification Technology Guidebook is designed for Air Force technical managers. Using

its guidelines, software development project managers can select methodologies and tools -

at the front-end of the software development life cycle that will not only benefit software
projects during system requirements, software requirements, and design phases, but also
during the remaining life-cycle phases.

The field of specification technology is in continual expansion. New methodology and tools
enter the marketplace weekly, while older ones mature or are adapted to accommodate different

computer hardware, CPU's, or languages. For this reason the guidelines are constructed in
modular form for easy inclusion of new methodologies and tools or revised descriptions of
,-!I ones.

Further, the guidelines are designed for use by Air Force technical managers on projects
contracted to companies of varying software engineering practices. In general, the approach

20 DISTRIBIJTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

[-!JNCLASSI-IFD/UNLIMITED 0x SAME AS RPT 0 DTC USERS UNCLASSIFIED

2?a NAII OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL I" I
William E. Rzepka (315) 330-4063 RADC (COEE)

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF -HIS PAGE
All other editions are obsolete.

UNCLASSIFIED

iH

±1.' .'.... *1" .".'. .• ,%#,.'....'.''-

UNCLASSIFIED

incorporates MIL-STD-490 and meets the requirements of all DOD and service software
standards. The life cycle information is in accordance with AFR 800-14 and DOD-STD-
2167 standards.

The method by which the user selects methodologies and tools is based on the use of
rating tables. These tables have been carefully constructed to permit a compact
representation of many selection considerations. A more complete discussion of these
considerations can be found in the Final Report of RADC Contract F30602-84-C-0073,
and can be studied as a companion volume to this guidebook.

The guidelines presented in this volume are the culmination of surveys of Air Force
missions, current technical literature (e.g., journals, conference proceedings, and
textbooks), discussions with specification technology developers, hands-on testing of
many methodology and tools software packages, hours of analysis, and some trial and SL
error approaches. These guidelines provide the Air Force with a simplified approach
to specification technology selection that will, for the majority of new projects,
allow the technical manager to select the methodology and tools that best suit his
needs.

18. Subject Terms (Continued).

Software Design Methodology

-

UNCLASSIFIED

I

-2 ~- ,.. / .

UNLA IID" " '

PREFACE

The Specification Technology Guidebook provides guidelines for the selection of require-
ments and design specification methodologies appropriate to various software develop-
ment environments and various types of software. The guidelines cover the require-
ments analysis, architectural and detailed design phases. These guidelines are incor-
porated in a table-driven format that define increasingly thorough and formal levels of
specification based on a software project's significance leveL Significance level measures
the relative importance of an individual project based on considerations of quality,
software, and project.

The guidebook provides summary descriptions of specification methodologies. It includes
a method for selecting automated tools to support the selected methodologies. It
includes typical paragraphs that can be included in Air Force software development
statements-of-work to specify the use of specification methodologies by the contractor
during the requirements analysis and design phases of a contracted development.

Three example problems for C31 software development projects are included. A primary
consideration imposed on each example is compatibility with the Ada* programming
language. The other considerations used for system requirements and design of the I
problems were derived from actual requirements set forth in C31 RFP's, and working
knowledge of the requirements for 31 software and system projects gained by Boeing
Aerospace engineers during the last decade.

* Ada is a trademark or the U.S. Department of Defense (Ada Joint Program Office).

.4',

~~~~~~~~~~~~~.. .. ...-.....'.,....'.,.-..... •........... .-..-.. ..... .. . ..



-I.

TABLE OF CONTENTS

Page

ABBREVIATIONS vii
1.0 SPECIFICATION TECHNOLOGY GUIDEBOOK 1-1

1.1 INTRODUCTION 1-1
1.2 OUTLINE OF SPECIFICATION TECHNOLOGY GUIDEBOOK 1-1
1.3 APPLICATIONS OF THE GUIDEBOOK 1-3
1.4 CONSIDERATIONS USED IN RATING REQUIREMENTS AND

DESIGN METHODOLOGIES AND TECHNIQUES 1-4
1.4.1 Concept Expressibility 1-4
1.4.2 Degree of Automated Support 1-4

2.0 HOW TO SELECT SPECIFICATION METHODOLOGIES 2-1
2.1 INTRODUCTION TO METHODOLOGY SELECTION 2-1
2.2 METHODOLOGY SELECTION PATHS 2-1 -

2.3 REQUIREMENTS METHODOLOGY SELECTION - Path 1 2-2
2.3.1 Step 1 -- Choose the Overall Significance Level (OSL) 2-2
2.3.2 Step 2 - Select the Best-Fit Software Category 2-9
2.3.3 Step 3 -- Designate Candidate Methodologies 2-13
2.3.4 Step 4 -- Compare Scores for Candidate Methodologies 2-16

2.4 DESIGN METHODOLOGY SELECTION - Path 2 2-16
2.4.1 Step I -- Choose the Overall Significance Level (OSL) 2-16
2.4.2 Step 2 -- Select the Software Category 2-24
2.4.3 Step 3 -- Designate Candidate Methodologies 2-24
2.4.4 Step 4 -- Compare Scores for Candidate Methodologies 2-27

" 2.5 METHODOLOGY SELECTION - Path 3 2-27
2.6 OVERALL CONSIDERATIONS 2-31
2.7 C31 EXAMPLE USE OF GUIDELINES 2-36

2.7.1 PATH 1 C31 EXAMPLE 2-36
2.7.1.1 Step 1 --Choose the Overall Significance Level (OSL) 2-36
2.7.1.2 Step 2 -- Select the Software Category 2-39
2.7.1.3 Step 3 -- Designate Candidate Methodologies 2-39
2.7.1.4 Step 4 - Compare Scores for Candidate Methodologies 2-39

2.7.2 PATH 2 C31 EXAMPLE 2-43
2.7.2.1 Step 1 --Choose the Overall Significance Level (OSL) 2-43
2.7.2.2 Step 2 -- Select the Software Category 2-44
2.7.2.3 Step 3 -- Designate Candidate Methodologies 2-46
2.7.2.4 Step 4 -- Compare Scores for Candidate Methodologies 2-46

2.7.3 PATH 3 C31 EXAMPLE 2-49

. ...- ,]

• .. *444.



TABLE OF CONTENTS - continued

-~ Page

S.2.7.4 Blank Worksheets 2-
3.0 HOW TO SELECT AVAILABLE AUTOMATED TOOLS 3-1

3.1 INTRODUCTION 3-1
3.2 THE SELECTION PROCESS 3-1
3.3 COMPARISON AND SELECTION PROCESS

FOR TOOL SET ALTERNATIVES 3-3
3.4 SELECTION PROCESS FOR GENERIC TOOLS 3-4

4.0 METHODOLOGY AND AUTOMATED TOOLS DESCRIPTIONS 4-1
4.1 Organization of this Section 4-1
4.2 Methodology Description Format 4-1 "*
4.3 DSSD 4-7
4.4 HDM 4-13

"'+ 4.5 SADT 4-19
4.6 SA/SD 4-24
4.7 SCR 4-30
4.8 SREM 4-36
4.9 VDM 4-42
4.10 DCDS 4-47
4.11 JSD 4-51
4.12 PAISLey 4-56
4.13 SARA 4-61
4.14 USE 4-67
4.15 Tool Set Description Format 4-73
4.16 TAGS 4-78
4.17 ARGUS II 4-83
4.18 EXCELERATOR 4-87
4.19 PROMOD 4-91
4.20 PSL/PSA 4-95

5.0 SOFTWARE ACQUISITION LIFE CYCLE 5-1
5.1 INTRODUCTION 5-1
5.2 AFR 800-14 SYSTEM ACQUISITION LIFE CYCLE 5-1
5.3 AFR 800-14 SOFTWARE DEVELOPMENT LIFE CYCLE 5-1
5.4 DOD-STD-SDS COMPUTER SOFTWARE DEVELOPMENT CYCLE 5-4
5.5 RELATION OF METHODOLOGIES TO LIFE CYCLE PHASES 5-4

6.0 SAMPLE PARAGRAPHS FOR STATEMENTS OF WORK 6-1
6.1 INTRODUCTION 6-1
6.2 TIGHTLY CONSTRAINED DIRECT SPECIFICATION 6-1
6.3 TIGHTLY CONSTRAINED-- SUBSET SPECIFICATION 6-2
6.A MODERATELY CONSTRAINED SPECIFICATION 6-3
6.5 LOOSELY CONSTRAINED SPECIFICATION 6-3

,. • , • . .

,.' '-..,-.-:.'-. . .-.. ; :.. -. , ..... • ... ... .. , ..- .' '. . .. :'.'.. --. . . . . .. ° ... •.....



TABLE OF CONTENTS - continued

Page

APPENDICES
APPENDIX A: ARMAMENT A-1
APPENDIX B: AVIONICS B-1
APPENDIX C: C31 C-i
APPENDIX D: SPACE D-i
APPENDIX E: MISSION/FORCE MANAGEMENT &-I
APPENDIX F: MISSILES F-i

iv



LIST OF FIGURES

Number Page

1-1 Guidebook Organization 1-2
2-1 Path 1 Overview 2-3
2-2 Significance Level Table 2-4
2-3 Methodology Selection Worksheet 2-5
2-4 Example Methodology Selection Worksheet 2-6
2-5 Example Use of Significance Level Table 2-8
2-6 Software Categories Table

part 1 2-10
part 2 2-11
part 3 2-12

2-7 Path 1 Match Table 2-14
2-8 Example Use of Path 1 Match Table 2-15
2-[ Path 1 Methodology Scores for OSL=. 2-17
2-10 Path 1 Methodology Scores for OSL=1 2-18
2-11 Path 1 Methodology Scores for OSL=2 2-18
2-12 Path 1 Methodology Scores for OSL=3 2-20
2-13 Example Use of Path 1 Methodology Tables 2-21

" 2-14 Path 2 Overview 2-22
2-15 Path 2 Match Table 2-25
2-16 Example Use of Path 2 Match Table 2-26
2-17 Path 2 Methodology Scores for OSL=0 2-28
2- 18 Path 2 Methodology Scores for OSL=1 2-29
2-19 Path 2 Methodology Scores for OSL=2 2-30
2-20 Path 2 Methodology Scores for OSL=3 2-31
2-21 Path 3 Overview 2-32

- 2-22 Path 3 Capabilities and Ratings 2-34
2-23 Methodology List Table 2-35
2-24 C31 Path 1 Example

Use of Methodology Selection Worksheet 2-38
2-25 C31 Path 1 Example

Use of Match Table 2-40
2-26 C31 Path 1 Example

Use of Methodology Scores for OSL=1 2-41
2-27 C31 Path 2 Example

Use of Methodology Selection Worksheet 2-45
2-28 C31 Path 2 Example

Use of Match Table 2-47
2-29 C31 Path 2 Example

Use of Methodology Scores for OSL=3 2-48
2-30 C31 Path 3 Example

Use of Methodology Ratings Table 2-50

. -. . . .

v ? ~ ** --:-.- * *.- * " * -'-- ,



LIST OF FIGURES - continued

Number Page

3-1 Tool Selection Process 3-2 71
3-2 Generic Specification Tools

part 1 3-6
part 2 3-7

3-3 Rating Criteria for Generic tools
part 1 3-8
part 2 3-9

5-1 AFR 800-14 System Acquisition Life Cycle 5-2
5-2 AFR 800-14 Software Development Life Cycle 5-3
5-3 DoD-STD-SDS Software Development Life Cycle 5-5
5-4 Life Cycle Phase Coverage 5-6

Vi

. 1 .-

-. < - ,- --



. .° . ... . . .. .. ' -

-. ABBREVIATIONS

* AD Armament Division
AFR Air Force Requlation
AFTI advanced fighter technology integration
ASD Aeronautical Systems Division
ASSM Abstract System Semantic Model
ATD air crew training device
ATO Air Tasking Order
BMO Ballistic Missile Office
BSD Berkeley Software Distribution
CAFMS Computer Assited Air Force Management System
CINCSAC Commander-in-Chief Strategic Air Command
COM computer output microfiche
CPCD computer program development plan
CPCI computer program configuration item
CPU central processing unit
CRT interactive terminal
CSCI computer software configuration item
CSOC Consolidated Space Operations Center
DCDS Distributed Computing Design System j
DDC Dansk Datamatik Center

. DDL distributed design language
DoD Department of Defense
DSSD Data Structured System Design

- ELINT electronic intelligence
GMB Graph Model of Behavior
HDM i-ierarchical Design Methodology
tIOL higher order language
HSL hierarchical specification language

. ICBM intercontinental ballistic missile
-US inertial upper stage
IVKV independent verification and validation
JINTACCS Joint Interoperable Tactical Air Command and Control System
JSD Jackson System Design
JSTPS Joint Strategic Target Planning Staff
LRU line replacement unit "__ _"_ _

- MDL modular design language Acce.jc: i-cr
* MI, military NTIS C> 1-"

OFP operation flight programs iC .]
OSL overall significance level U:,2 C. ,]

.........

vii I

-_i 4



ABBREVIATIONS - continued

PAISLey Process-Oriented, Applicative, Interpretable Specification Language
pdl program design language
PROM programmable read-only memory
RADC Rome Air Development Center
RFP request for proposal
RSL requirements statement language
SADT Structured Analysis and Design Technique
SARA System Architect's Apprentice

SCF Satellite Control Facility%SCR Software Cost Reduction project
SD Space Division

SDL software development laboratory
SILTF System Integration Laboratory and Test Facility
SIOP Single Integrated Operation Plan
SL significance level
SPO System Program Office
SREM Software Requirements Engineering Methodology

SRU shop replaceable unit
STD standard
TAC Tactical Air Command
TACC Tactical Air Control Center
TACS Tactical Air Control System
TDI transition diagram interpreter
TLS top level specification
TRD Test Requirements Document
TSL test specification language
(17 unit under test

VDM Vienna Development Method

U.,

Viii
L ):



.°-o

1.0 SPECIFICATION TECHNOLOGY GUIDEBOOK

1.1 INTRODUCTION

The Specification Technology Guidebook is designed for Air Force technical managers.
Using the guidelines herein, software development project managers can select metho-
dologies and tools, at the front-end of the software development life cycle, that will not
only benefit software projects during system requirements, software requirements, and
design phases, but also during the remaining life-cycle phases.

The field of specification technology is in continual expansion; new methodology and
tools enter the marketplace weekly, while older ones mature or are adapted to accom-
modate different computer hardware, CPU's, or languages. For this reason, the guide-
lines are constructed in modular form, for easy inclusion of new methodologies and
tools, or revised descriptions of old ones.

Further, the guidelines are designed for use by Air Force technical managers on projects
contracted to companies of varying software engineering practices. In general, our
approach incorporates MIL-STD 490 and meets the requirements of all DoD and Service
software standards. The life cycle information is in accordance with AFR 800-14 and - .
DoD-STD-SDS standards.

The method by which the user selects methodologies and tools is based on the use of
rating tables found in section 2.0. These tables have been carefully constructed to per-
mit a compact representation of many selection considerations. A more complete dis-
cussion of these considerations can be found in the Final Report of RADC Contract
F30602-84-C-0073, and can be studied as a companion volume to this guidebook.

The guidelines presented in this volume are the culmination of surveys of Air Force mis-
sions, current technical literature (e.g., journals, conference proceedings, and textbooks),
discussions with specification technology developers, hands-on testing of many metho-
do)logy and tools software packages, hours of analysis, and some trial and error
approaches. These guidelines provide the Air Force with a simplified approach to
specification technology selection that will, for the majority of new projects, allow the
technical manager to select the methodology and tools that best suit his needs.

.,

1.2 OUTLINE OF SPECIFICATION TECHNOLOGY GUIDEBOOK

'Ihle Specification Technology Guidebook comprises six major sections and six appen-
-. " dices, as shown in figure 1-1. A brief summary of contents is presented in the following 1<."

paragraphs.

.9. r: 77. .

.~7 
A.. .. . a.......



I

APPENDIX F:?' MISSILES

~APPENDIX E

Appendices list software MISSION FORCE
functions characteristic of each MANAGEMENT

AF mission area and map them
into Guidebook standard
software categories

SPACE e o oW P R

APPENDIX C _"-, -.

C31

~APPENDIX 8

AVIONICS

APPENDIX A
ARMAMENT

":, Sample statement and SECTION 6 '

paragraph for im posing SAMPLE STATE ME NT OF".'" -~~~requirements methodology on WORK PARAGRAPHS '--."

contractor.

DESCRITIONSBrief section on how
DESCRITIONSmethodologies fit in overall

life cycle.

SC IO 3 ETO ""

AVAILABLE Informational descriptions of
AUTOMATED TOOLS methodologies and references.

" SECTISECT-"O
- 2

SPECIFICATION Guidelines for selecting
METHODOLOGIES automated tools to support

chosen methodology.

r SECTON31
INRDUT O OSLC -T

UGuidelines and tables used toii c~me hosen etodoogy

Figure 1. Guidebook Organization

1-2

- . "w

o .-. ,

. . . . . . . . . . . . . . . .. . . . . . .



Section 1.0 introduces the guidebook, stating objectives, describing outline and content,
and discussing applications.

Section 2.0 describes how an Air Force technical manager may select a suitable metho-
dology for his project by means of the known project requirements and the guidelines
and tables provided. Three possible selection paths are given, along with examples
which step the reader through each selection path.

Section 3.0 describes how the Air Force technical manager may select automated tools
that will be compatible with his methodology.

Section 4.0 provides detailed descriptions of methodologies and tools.

Section 5.0 describes the software acquisition life-cycle standards most likely to be
encountered by the Air Force technical manager, briefly discussing how these relate to
specification methodologies listed in the guidebook.

Section 6.0 provides sample SOW paragraphs for guiding the AF technical manager in
writing statements of work for specification technologies.

The appendices describe six Air Force mission areas: armament; avionics; command,
control, communication, and intelligence (C3 I); missiles; space; and mission/force
management. Each appendix lists software functions characteristic of the computer pro-
grams developed within that mission. Each function is classified according to software
categories used in section 2.0.

1.3 APPLICATIONS OF THE GUIDEBOOK

The principal purpose of this guidebook is to provide the Air Force technical manager .. .
with a means to select a methodology and compatible tools for his future software pro-
ject. Additionally, the guidebook can be used in preparing a Statement of Work, and
for evaluating proposals.

All three applications of the guidebook make use of the tables and selection paths of
section 2.0 in selecting appropriate specification methodologies.

The guidebook was prepared for a user with a general technical background, who may
be unfamiliar with specific system/software requirements and design technologies.

1-3
. . . ...

", ° - ..

.. . . ... . . .. . a ... • .... ¢ - • " I - .l " I"1 .4l .



1.4 CONSIDERATIONS USED IN RATING REQUIREMENTS AND
DESIGN METHODOLOGIES AND TECHNIQUES

Several considerations were used during development of a matrix that rates the
specification technologies techniques evaluated and discussed in the guidelines. These
are described in the following paragraphs.

1.4.1 Concept Expressibility

Whether a specification methodology is suitable for a particular development project
depends primarily upon the concepts specifiable by the requirements methodology and

the approach to structuring the architectural design taken by the design methodology.
A requirements specification will be inadequate if the methodology cannot model the
important features of the system to be developed. A design specification will be inade-
quate if the structuring technique couples software modules too strongly to facilitate
change, simply because the technique ignored a more important set of relationships.

1.4.2 Degree of Automated Support

The suitability of a specification methodology for a particular development project
depends upon the significance of the project and the amount of computer support a
methodology provides. It would not be cost-effective to use a very powerful
methodology/toolset like SREM/REVS for a project whose end product was a prototype
of a software development environment tool (e.g., a calendar program). It is the more
significant, complex, and time-consuming projects that will benefit most from more
powerful methodologies.

1-4

Z'--



2.0 HOW TO SELECT SPECIFICATION METHODOLOGIES

This section presents guidelines for use by the project manager in selecting a
specification technology for a future project.

2.1 INTRODUCTION TO METHODOLOGY SELECTION

The first part of this section provides the guidelines for selecting a methodology and
supporting tools for a project, by system category and with full consideration given to
life cycle phase. By following the selection process in this section, the project manager
will be guided through the maze of current specification technologies and tools to arrive
at a final selection that fulfills his needs. The process of final methodology selection will
also aid the technical manager in assessing his project requirements and help him evalu-
ate his needs during the entire project life cycle.

The second part of this section illustrates how the guidelines and tables are used in a
C3I example. The objective is to define a front-end environment for developing C3I sys-
tems that is compatible with the Ada programming language. 7

2.2 METHODOLOGY SELECTION PATHS

The guidelines provide a choice of three paths, depending on which software acquisition
life cycle the project is in when the manager wants to perform methodology selection. A
Path is provided for use at each of the following:

1. Path 1. At concept definition (i.e., in the Requirements Phase of the life cycle). 44
2-. Path 2. After requirements analysis is complete (i.e., in the Design Phase of the

life cycle).

3. Path 3. When the project dictates the use of certain capabilities (i.e., independent
of the life cycle).

The guidelines outline steps along each Path, providing tables for reference and a
worksheet to fill out along the way. Paths 1 and 2 are similar; the first is used to select
a methodology using requirements data and the second is used to select a methodology
using design data. Path 3 is shorter, and is used when a project manager knows that
the final methodology must contain specific capabilities.

.- The selection process for Paths 1 and 2 comprise four steps, as follows:

.1

2-1

:........................................... ......- . .... ..
%- .7. X



1. Step 1. Choose the overall significance level (OSL) of the project. ijl

2. Step 2. Select the best-fit software category.

3. Step 3. Designate candidate methodologies.

4. Step 4. Compare scores for candidate methodologies.

In accomplishing the four steps, above, the project manager is required to reference
tables and enter data on a worksheet. Once the candidates are designated (Step 3), final
methodology selection is straightforward.

Section 2.3 contains step-by-step instructions for reading the tables, filling out the
worksheet, and selecting a software specification methodology following Path 1. Section
2.4 contains the instructions for following Path 2. Section 2.5 contains instructions for
Path 3.

2.3 REQUIREMENTS METHODOLOGY SELECTION - Path 1

An outline of the Path is shown in figure 2-1. The steps are discussed individually in
.. the following paragraphs.

2.3.1 Step 1 -- Choose the Overall Significance Level (OSL)

The first step in determining the correct methodology for a project is to choose an
Overall Significance Level (OSL) value for that project. Two items are needed: the
Significance Level Table, figure 2-2 and the Methodology Selection Worksheet, figure 2-
3. A completed example worksheet is shown in figure 2-4.

The Significance Level (SL) Table is divided into five major columns: Project Considera-
tions, Software Considerations, Quality Considerations, Software Examples, and
Significance Level. Under each major column are sub-columns, each labeled by a con-
sideration. For example, under the major column Project Considerations are three sub-
columns Cost, Criticality, and Schedule. Similarly, the major columns Software Con-
siderations and Quality Considerations have three and four sub-columns, respectively.
The Software Examples column provides example software products for use as a guide in
assessing significance levels. The Significance Level column contains the SL numeric
values that are assigned to the capabilities, based on the considerations.

The Methodology Selection Worksheet (also called "the worksheet") is divided into four
columns: Considerations, SL, Weight, and Product. Note that the rows under the Con-
siderations column correspond to the consideration sub-columns in the Significance
Level Table (figure 2-2).

2-2

L,.,: -' . .. -: "' '' - -, _ -v '' - - ''-'' .". -,-..,-:: '" ' -. '. ..,... ,' . '""'' -.,,-.:



V W I.Q17-__V .-. 7 .31 I. . ,-.... ._.

K.q

q. 

7_1

0 E
C)-

r=U= ._-_i:\

0 O 2£2.

C) 0

%

Figure 2-1 Path I Oyeeniew

2-3



SIGNIFICANCE LEVEL TABLE

Project Considerations Software conuiderations Quality Considerations Software m~u

Coat 'nticality Schedule uoplex-Dvt For-5ftuaseeliabilit Correct,- blaiati- enifaua
________ty maity Utility sesa &ability

*Low No eni- Tight ;traight- Few Ole. Respond Fusec- Note Docie- Tat
*Budget, ticality Schedule orward defined shot, correctly tiolal- expected meata,- Gemer

emphasis Amiga- oil- require Proto- to mom- ity met; 60is a Oaver-
on ax is meat iou, mebti, type; sal con- source siom
cost say to amlor- Test coudi- straints code table,

hieckout Mal S/W, tioas ignored trade
develop- Demo study
meat;I S/W sizes-
used lated

______ _____ 0loily _______ ___

Normal Nui,- Some 4oderate Normal Ground Faults Fuse- Predict Source Editor, I
coot saaee schedule "om- to Based corrected tiomal- impact code cow-
Cosn- Impact, eos- liexaty Strong S/W, periodi- ity itad of doce- piIer.
straints ao Mo- straints Con- Data eally; Cosn- Changes meat&- mission

Pio trcto Reuc te- sraitstioma simula-
impact Coo- tion; porary met updated tios,

troll, Mission wor- eaviasa-
Infor- Prep rousds mental
Mal S/W pro.- simalk-
revi ews vided tor ____

Some Mission Normal 3reater Strong Real- Faults Imple- Impact Full AWACS, 2-7
Cost Impact Schedule -- m- Coo- time removed menas Of comple- ALCM,
Flexa. Con- plexty true- Avion- ASAP tion champgis meat of PMALS,
bility Wtaists tua a Svl- some- doe- C31,

Con- s/u, dated What mest&- AVION-
trols, C31 against local- tiorn; ICS
Formal design ized design W~S-
Revews specilicatiosa doce- SION

w ena- PLAN-
Itios NING

updated
___ - - ____ ___ too

CosFt Nuclear, Adds- )ifrcult Rigid Higbly No Desiga Extent Require- Nuclear 3
not light tional Pro b- Con- Cntical faults vaji- Of meats Corn-
predom. crew require- ei. tract"a Appa- dated changes through trois;
11naant safety meat$ om- Con- cations, against optimally source critial
f Acto r will sot Palex trols Possible require- local- code software

ai-jimpact ;all- Over Cats- meats ised docit-
tively schedule ion, Develop- trophir specialcatiom ment-
uncon- ,ard to meat Results tia
strajued p/l-alwayv

II ~ &tC p-to-

A fault is an undesirable response to anomalous conditions.

None of the prevent mature software development methodolologies enforce documenlation of enhancement*
orcagsat any level.

Figure 2-2 Significance Level Table

ML

2-4

%- - - . . .*~ . .

~-:--~ --. :~ ; )N-':Y S~kj~2~.AJ-'. 'A.



METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED

LIFECYCLE PHASE..............-REQUIREMENTS -DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1, 2, 3) (1 =NORMIAL) (WEIGHT

__ __ __ __ __ _ FIGURE 2-2 _ _ _ _ _ __ X SL)
COST _____

CRITICALITY ____

SCHEDULE________ ___

COMPLEXITY___________

DEVELOPMENT
FORMALITY ____

SOFTWARE

SOFWAEI A TEGORY

SCORRECTNES

MANANBLT

IKE

Figure 2-3 Methodology Selection Worksheet

L-LL



- - - - - .~ . -. .. ~ t, 7 .7

.2 ~METHODOLOGY SELECTION WORKSHEETJ

SOFTWAkRE TO BE ACQUIRED E:KAMH PL6
LIFECYCLE PHAkSE............ -!REQUIREMENTS --- DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

FIGURE 2-2 _______ L
COST/
CRITICALITY / ______

SCHEDULE3 o
COMIPLEXITY //

DE'VELOPM1ENT
FORMA.LITY//
SOFTWARE

UTELIT'
RELIABITY2

OSL =SUMI OF PRODUCT /SUM OF WEIGHT=
Rcowid dow-n-

SOFTWARE CATEGORY4
CAkNDIDATE METHODOLOGIES

KEY I F
[SCORE

Figure 2-4 Example Methodology Selection Worksheet

2-6



m - .'.- -- -- -- -.-

Additional copies of the Methodology Selection Worksheet are located at the end of this
section. If all copies have already been torn out, then figure 2-3, Methodology Selection
Worksheet, can be reproduced, and returned to the guidebook.

Entries for the worksheet are defined as follows:

1. CONSIDERATIONS - the column of considerations whose names correspond to
sub-columns in the Significance Level Table (figure 2-2).

2. SL -- the column of siguificance level values (0 through 3) relating to the con-
siderations in the Significance Level Table.

3. WEIGHT -- the column of weighted values assigned to the considerations.

4. PRODUCT -- the column of products of SL's and weights.

5. SUM -- two sums are used: the sum of the weight column and the sum of the pro-
duct column.

6. OSL -- the Overall Significance Level for the project, obtained by dividing the pro-
duct sum by the weight sum.

7. SOFTWARE CATEGORY -- the numerical category obtained from the Software
Categories Table (figure 2-6) in Step 2.

8. KEY -- the alphabetic key that represents a methodology, obtained in Step 3.

9. SCORE -- the numeric score for a methodology, obtained in Step 4.

In Step 1 the user begins filling out the worksheet, using the SL table and his knowledge
of the software project. To begin, the user asks: What is the significance of cost for the
project? Under the Cost column, four choices correspond to Significance Level numbers
in the right-most column of the table. Thus, if Normal cost constraints were chosen as
the most appropriate cost project consideration, the SL would be 1. Figure 2-5, Exam-
pie Use of Significance Table, illustrates this procedure. In this case, a 1 is placed under
SL in the Cost row of the Methodology Selection Worksheet, as shown in figure 2-4.

* For each column in the table, the description is located that best fits the consideration
*T for that column, then the corresponding SL number is written on the worksheet in the

correct row under SL. At the end of this process, the SL column of the worksheet will
contain ten values.

Next, the ten considerations are weighted by entering values in the Weight column. The I
weights reflect how relevant or important a single consideration is to a project. If all
considerations are weighted equally, a 1 is entered in each row of the Weight column. If
a consideration is critical, a higher weighting (e.g., 3) is assigned. A reasonable range

2-7



C0.5 SIGNIFICANCE LEVEL TABLE

s~drtop Software Considerations Qvahity Conuiderations Software ignilicanc

Coat icalit Schedule mlxDv o-Sf atRlaiiy Cret ~su efaii

% o n - Tight 3traight- Few One- Respond Fac- None Deco- Tant 0
B tiAli Schedule 'orward defined shot, correctly tienal- expected meat&- Geaer,

emphasis assign oil- require- Proto- to now- ity met; ties in camver-
on mAS ment o0n meats, type; nmal con- source son

Ccost amy to l nfer- Test condi- straiats code table,
heckeut mal S/W. tioss ignored trade

develop- Demo study £le r
meat, S/W lima-a
ueed lated

_____ ____ locally _______ __

NormalI Some 4oderate Normal Ground Faults Fuac- Predict Sore Edtr 1 - O-I
cost I c e Schedule om1- to Based corrected tional- impact code cCon- I pact, Con- lexity Strong S/W; periodi- ity and of dc- pilerstraints o Mo,- straints Con- Data cally; con- changes meat&-

91O tractor Reduc- tem- straints siua
I mpact Con- tMon; ,orary met 006 pdav:&ted tion,

infer- Prep karounds mental
MAI S/W pro- simula-
reviews vided IgorI

Some Mission Normal Greater Strong Real- Faults Imple- Impact Full AWACS, 2

Cost Impact Sched ale eom- COn- time removed menta- Of comple- ALCM,
Flexi- Con- plexity trae- Avion- ASAP tion changes ment of PMALS,
bility straints Itural ice, C3 vall- some- doca- C31,

Con- 9/w. dated what menta- AVION-
Itrols, C31 against local- tica; ICS

Formal design ised design MIS-

Reviews specification doca- SION
meata- PLAN-
tion NING

I updated
S - ________________ too

Coc Nulear Addi- ~)ificult Rigid Highly No Design Extent Require- Nuclear
Net light tionmi ro b- Con- Critical faults vali- of ments Con-

.'predom- crew requir.- em, t ra ctu&I Appli- dated changes through trols,

Ist Isafety meats -ow- Con- cations, against optimally source critical

factor, will not )lex trols Possible req u ire- local- code software
rela- Fimpact We- Over Cata&- meats ised doen-

%tively sceul ion, Develop- trophic specification menta-
ueco*- I ard to wMent Reslts tien

strained &ItaJ- Falways
late up-to-

I j _____ [______ - _________ ________ date

Figure 2-5 Example U.se of Significance Table



for weight values is 0 through 3. Since a weight of 0 implies that a consideration is not
relevant to the project, a negative weight is meaningless. A 1 is normal; a 2 is impor-
tant: and a 3 is very important. Numerical values above 3 lose significance, since the
calculation is relatively insensitive to a single consideration's weight value. Weight
assignment is subjective and dependent on the project manager's knowledge of the pro-
posed project, but is valuable in emphasizing considerations. Initially, the project

-' manager may feel more comfortable assigning a 1 as the weighting value, but as he
gains experience, he will acquire a feel for how weighting influences final methodology
selection.

The Product column is completed on a row-by-row basis by multiplying the SL by the .
Weight. For example, if the SL is 1 and the weight is 2 the product is 2 X 1 = 2. The

2 is entered in the Product column. Each row on the worksheet is processed similarly,
. resulting in entries for all considerations in all three columns.
2-

The sum of the weight column is calculated and entered in the Sum row; the sum of the ..
product column is calculated and entered in the Sum row. The Overall Significance

Level (OSL) for the project is calculated as follows: J

OSL Product Sum / Weighting Sum

Thus, if the Product Sum = 12, and the Weighting Sum 10, the OSL = 1.20. Since
whole numbers are required in future steps, the fraction must be rounded up or down.
In determining this, the consideration is located with the highest weighting and its
corresponding SL noted. If the SL is 2 or greater, the OSL is rounded up; if 1 or less,
rounded down. In our example, cost has the highest weight; the SL for cost is 1, so we
round down. The final OSL becomes 1 and is entered on the worksheet.

2.3.2 Step 2 -- Select the Best-Fit Software Category

In Step 2 the user determines which software category best fits his proposed software

project. In accomplishing this he uses the Software Categories Table, figure 2-6, and
enters the result on the Methodology Selection Worksheet.

The Software Categories Table is a multi-page table of three columns: Category,
(haracteristics, and Description. The user reviews the 18 software categories, using his I
knowledge of the proposed software project, and selects the most relevant category.

The categories, characteristics, and descriptions in the tables are grouped by complexity
and criticality in accordance with a survey of Air Force software engineering considera-
tions. undert iken during the Software Test Handbook contract, F30602-82-C-0059. 1 A
user finding difficulty in identifying an appropriate software category, should refer to

1 SeP Y;-ftware Test Handbook Final Report (RADC-TR-84-53, Vol I) for details of the survey.

2- I9
I °



1-

SOFTWARE CATEGORIES TABLE

Category Characteristics Description
(1) Arithmetic Based Data oriented Programs that do primarily

arithmetic (e.g., payroll and
wind tunnel data analysis)

operations. A real-time

environment is not necessary.
Small, throwaway programs
for preliminary analysis also

(2) Event control Control-oriented processing Does real-time proceming of
data resulting from external
events. An example might
be a computer program that

_______________________________ processes telemetry dlata

(3) Process control Control-oriented processing Receives data from an eater-
r,&! source and issues com-
mands to that source to con-
trol its actions based on the

received data.

(4) Procedure control Complex processing Controls other software, for
example, an operating system
that controls execution of
time-shared and batch com-

______________________ ______________________________ puter programs.

(5) Navigation Complex processing Does3 computations and
modeling to compute infor-
mation required to guide an
airplane from point of origin
to destination.

6) Fh~ght DynIami-F Control- dominated complex Uses the functionst computed
processing by navigation software and

augmented by control theory
Wo control the entire flight of

an aircraft.

Figure 2-6 Software Categories Table (part I of 3)

2-10



continued '-"

Category Characteristics Description

(7) Orbital Dynamics Control-dominated complex Resembles navigation and
processing flight dynamics software, but

has the additional complexity
required by orbital naviga-
tion, such as a more complex
reference system and the
inclusion of gravitational
effects of other heavenly
bodies. - -

(8) Message processing Datadominated complex Handles input and output
processing messages, processing the text

or information contained
therein.

(9) Diagnostic S/W Data-oriented processing Used to detect and isolate
hardware errors in the com-
puter in which it resides or in
other hardware that can 771

communicate with that com-
puter.

(10) Sensor and signal pro- Control-dominated complex Similar to that of message
cessing processing processing, except that it

requires greater process.ng.
analysing, and transforming
the input into a usable data
processing format.

(II) Simulation Complex, depending on Used to simulate an environ-
entity being simulated ment, mission situation,

other hardware, and input!-
from these to enable a more
realistic evaluation of a com-
puter program or a piece of
hardware.

(12) Database management Data-oriented processing Manages the storage and
access of (typically large)
groups of data. Such
software can also often
prepare reports in user-
defined formats, based on the
contents of the database.

Figure 2-6 Software Categories Table (part 2 of 3)

2-li



Category Characteristics Description
(13) Data Acquisition Control- dominated complex Receives information in real-

processing time and stores it in some
form suitable for later pro-
cessing; for example, software
that receives data from a
space probe and files it for

_____________________________ later analysis.

*(14) Data presentation Data-oriented Formats and transforms
data, as necessary, for con-
venient and understandable
displays for humans. Typi-
cally, such displays would be
for some screen presentation.

(15) Decision and planning Data-dominated complex Uses artificial intelligence
aids processing techniques to provide an

expert system to evaluate L
data and provide additional
information and considera-
tion for decision and poli-

__________________________ ymakers.

(16) Pattern and image pro- Data-dominated complex Used for computer image
cessing processing generation and processing.

Such software may analyse
terrain data and generate

__________________________images based on stored data.

(17) Computer system Data-oriented Provides services to opera-
*Software titonal computer programs

__________________________ __________________________ (i.e., problem-oriented).

(18) Software development Data-oriented Provides services to aid in
tools the development of software

(e.g., compilers, assemblers,
static and dynamic

______________________________ _______________________________ analyzers).

Figure 2-6 Software Categories Table (part 3 of 3)

2-12



the appendix describing the pertinent Air Force mission and find the software function
most similar to the proposed software project. The category number assigned to that
software function can be used as the software category on the worksheet. The software

I-~. category number is entered in the Software Category row of the worksheet (as shown in
figure 2-4).

The categories are identical to those found in the Software Test Handbook (RADC-TR-
84-53, Vol II), except the category formerly designated Batch has been renamed
Arithmetic-Based to better convey its nature.

2.3.3 Step 3 -- Designate Candidate Methodologies

In Step 3 the user matches the capabilities of the methodologies against the capabilities
he desires in a requirements methodology; i.e., the user knows which capabilities he'd
like in a methodology and this step allows him to select those methodologies coming
closest to having those capabilities. To accomplish this, the user will need the Path 1

- Match Table, figure 2-7, and the Methodology Selection Worksheet.

A methodology that is a good candidate will have approximately the same pattern of
entries (where x entries indicate the capabilities present in a methodology) in a row of
the Methodology section of the Path 1 Match Table that the Software Category section
has in the software category row. Note that a perfect match occurs when a row in the
methodology section has at least the same number of x's in the same columns as does the

J row in the Software Category section; i.e., a perfect match still exists if more than the
needed matching x's are contained in a methodology row. The key letters for the best
candidates are entered on the worksheet.

For instance (see figure 2-8, Example Use of Path 1 Match Table), software category 6
needs a methodology with capabilities for state modeling, data flow modeling, control . -

flow modeling, object modeling, and timing specification (i.e., these columns contain
x 's).

2 In the Methodology section, two methodologies have identical entry patterns, D and F.
Thus, methodologies D and F become candidates for final selection and are so noted on
the worksheet. Perfect matches may not exist between a software category's capabilities
and the methodology capabilities. For example, the K methodology is close to matching
and could be selected as a valid candidate, unless its absence of the state modeling capa-
--bility would critically affect the project. The user must look for reasonable capability

approximations in selecting candidate methodologies. He may select a set of candidates
having either less or more capabilities than those desired.

' In general, completing Step 3 means the user has selected several candidate methodolo-

._.
:-:,: 2-13"-

.. -.... .° .-. .- .: .- .-. : .-. ..:. • .... 5... ..°.: .: .: : , .,. .-. ... -.., ... ... ..:: , ....., ... : :. .. * 1 ..



- TS -:.. . . . . . .I.I. N

_______PathIMatchTable

Modeling Performance
_________Techniques _______Specifiation

Flow
State ____ __Object Timing Accuracy

Data Control

S 1I _ _ x x _ __x

o 2 _ _ _x _ __x

F 3 _ _ _ _ _ _x _ __x

T 4 _ _ _x x_ _ _x

w 5 x x x x
A 6 x x x x x
R 7 x x x x x x L

E 8 x x x x _ _ _

x x
C 10 x x x x x x
A I1I x x x x x _ _ _

T 12 ____ __ x x x

E 13 x x - x x x x
G 14 ____ __ x x x

o 15 x x x x __ __

R 16 x x x x
Y 17 x x x x ______

_ _ 18 ___ ___ x x______

M A _ _ _x __ _ __ _ _ _

E B x __ _ _ _ _ _ _ _ x

T C _ _ _ x x _ _ _ _

H D x x __ _ _ _ __ _ _ _ __ __ _

o E _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

D F x x ____x

o G _ _ _ __ _ x x

L Hxx x

0 1x x x

Y K xx x x

Figure 2-7 Path 1 Match Table

2-14



- ~ - - ~-r - * * - - - %

_______Path 1 Match Table
A' Modeling Performance

_________Techniques _______Specification

Flow
State ____ __Object Timing Accuracy

Data Control

S I x x_ _ _ x

o 2 __ _ __ _x __ _

F 3 _ _ _ _ _ _ x x_ _ _

T 4 ____ x x __ ___ 5 4u re
W _____ x ~ rr ~ ~ ____ .

A 6 x x x x

*E 8 x x x x _ _ _

9x x x
C 10 x x x x x x
A 11 x x x x x _____

T 12 ______ x ___ _ x x

E 13 x x x x xx
G 14 x ______ x x
0 15 x x x x x

R 16 _ _ _ x x x x

Y 17I _____ x x x x _____

18 _____ x _ _____ x _____

*M A _ __ x x x _ _

*E B x x x

H( D x x x x x ____

F x x x x x x

L H1 x _ _ x x

o 1 x x __ _

Figure 2-8 Example Use of Path 1 Match TableJ

4 2-15

% -%I- * '--



gies having capabilities critical to the project's life cycle phase and software category.

2.3.4 Step 4 -- Compare Scores for Candidate Methodologies - ,

In Step 4 the user scores each candidate methodology and determines the final metho-
dology for his proposed software project. To accomplish this, he will need the Metho-
dology Selection Worksheet and one of four tables.

He begins by finding the proper methodology score table for his Path and OSL. On
Path 1, he uses figure 2-9 if the OSL is 0, figure 2-10 if the OSL is 1, figure 2-11 if the
OSL is 2, and figure 2-12 if the OSL is 3.

After accessing the correct table for his OSL, he locates the methodology letter under
the Methodology column, then follows that row to the column under the Software
Category number. See figure 2-13, Example Path 1 Methodology Scores for OSL=I.
The intersection of the methodology row and the software category column contains the
pre-calculated score for the candidate methodology. He enters this score in the Score
row, under the candidate methodology key letter, on the worksheet.

The candidate methodology that best fits the proposed software project requirements
will be the one with a final score nearest zero. That is, if methodology D has a final
score of 12 and methodology F has a final score of 21, then methodology D is the best
fit. A methodology score found in the four OSL tables indicates how the methodology
compares to a fictional ideal methodology. A positive score means the methodology pro-
vides more support to the project than nominally desired; a negative score means the
methodology provides less support to the project than nominally desired; a score of zero
means a methodology provides the support nominally desired.

2.4 DESIGN METHODOLOGY SELECTION- Path 2

Path 2 is similar to Path 1, except that Step 3 matches desirable design phase capabili-
ties (instead of the requirements phase capabilities of Path 1) against the Path 2 match

table, and the scoring of the methodologies in Step 4 makes use of a separate set of
design phase OSL tables.

An outline of the design methodology selection Path is shown in figure 2-14. The Steps
are discussed individually in the following paragraphs.

2.4.1 Step 1 -- Choose the Overall Significance Level (OSL)

2-1"

4



1:4-7

Path I
Methodology Scores (OSL - 0)

Methodology Software
Category

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 24 23 23 24 25 30 27 28 24 27 30 24 27 24 22 29 28 25-

B 38 34 34 37 39 41 46 40 38 46 41 38 46 38 31 41 40 37

C 26 27 27 26 27 32 30 39 26 30 32 26 30 26 22 29 39 25
D 32 31 31 32 33 39 37 35 32 37 39 32 37 32 30 37 35 31

E 31 28 28 28 30 36 36 35 31 36 36 31 36 31 24 34 35 30
F 44 42 42 44 47 48 51 44 44 51 48 44 51 44 37 47 44 40
G 27 19 19 20 25 28 29 27 27 29 28 27 29 27 19 31 27 25

H 47 40 40 41 46 49 50 48 47 50 49 47 50 47 33 52 48 45
1 28 21 21 22 22 31 29 30 28 29 31 28 29 28 22 29 30 26
3 33 36 136 36 39 40 43 39 33 43 40 33 43 33 26 36 39 30
K 40 45 45 45 47 53 51 51 40 51 53 40 51 40 34 47 51 42
L 40 37 37 42 39 46 47 42 40 47 46 40 47 40 32 43 42 38

Figure 2-9 Path I Methodology Scores for OSL=O

I-

. -. - . - -

. ....* . ,..... .. . , .. ." .. . " ". . ,.. - . . : . . . ..... .. .. . . . . .- . .. - ' .;.... ..-.



w -

Path 1
Methodology Scores (OSL - 1)

Methodology Software
Category

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18

A 2 1 1 1 1 3 -1 3 2 -1 3 2 -1 2 2 4 3 4

B 16 12 12 14 15 14 18 15 16 18 14 16 18 16 11 16 15 16

C 4553352442 5 4 2 4 2 4 4 4

D 10 9 9 9 9 12 9 10 10 9 12 10 9 10 10 12 10 10

E 9 6 6 5 6 9 8 10 9 8 9 9 8 9 4 9 10 9

F 22 20 20 21 23 21 23 19 22 23 21 22 23 22 17 22 19 19

G 5 -3 -3 -3 1 1 2 5 1 1 5 1 5 -1 6 2 4
H 25 18 18 18 22 22 22 23 25 22 22 25 22 25 13 27 23 24

I 6 -I -I -1 -2 4 1 5 6 1 4 6 1 6 2 4 5 5

- 11 14 14 13 15 13 15 [4 11 15 13 11 15 11 6 11 14 9

K 18 23 23 22 23 26 23 26 18 23 26 18 23 18 14 22 26 21

L 18 15 15 19 15 19 19 17 18 19 19 18 19 18 12 18 17 17 . -j

Figure 2-10 Path I Methodology Scores for OSL=I

2-18

/.. %



Path 1
Methodology Scores (OSL = 2)

Methodology Software
Category

1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18

A -20 -21 -21 -22 -23 -24 -20 -22 -20 -29 -24 -20 -29 -20 -18 -21 -22 -17
B -6 -10 -10 -9 -9 -13 -10 -10 -6 -10 -13 -6 -10 -6 -9 -9 -10 -5
C -18 -17 -17 -20 -21 -22 .26 -21 -18 -26 -22 -18 -26 -18 -18 -21 -21 -17
D -12 -13 -13 -14 -15 -15 -19 -15 -12 -19 -15 -12 -19 -12 -10 -13 -15 -11
E -13 -16 -16 -18 -18 -18 -20 -15 -13 -20 -18 -13 -20 -13 -16 -16 -15 -12

F 0 -2 -2 -2 -1-6 -5 -6 0 5-6 0 -5 -3 -3 -6 -2
G -17 -25 -25 -26 -23 -26 -27 -23 -17 -27 -26 -17 -27 -17 -21 -19 -23 -17
H 3 1 - 4 -5 -2 -5 -6 -2 3 -6 -5 3 -6 3 -7 2 -2 3
1 -16 -23 -23 -24 -26 -23 -27 -20 -16 -27 -23 -16 -27 -16 -18 -21 -20 -16
J -11 -8 -8 -10 -9 -14 -13 -II -11 -13 -14 -11 -13 -11 -14 -14 -11 -12

K -4 1 1 -1 -1 -1 -5 1 -4 -5 -1 -4 -5 -4 -6 -3 1 0
L -4 -7 -7 -4 -9 -8 -9 -8 -4 -9 -8 -4 -9 -4 -8 -7 -8 -4

Figure 2-11 Path I Methodology Scores for OSL=2

2-19

,17 '



rW- -- Y -7 7--7J - -

Methodology Scores (OSL 3)

MethodologS Software
Category

1 2 3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18

A -42 -43 -43 -45 -47 -51 -56 -47 -42 -56 -51 -42 -56 -42 -38 -46 -47 -38

-28 -32 -32 -32 -33 -40 -38 -35 -28 -38 -40 -28 -38 -28 -29 -34 -35 -26

-40 -39 -39 -43 -45 -49 -54 -46 -40 -54 -49 -40 -54 -40 -38 -46 -46 -38

-34 -35 -35 -37 -39 -42 -47 -40 -34 -47 -42 -34 -47 -34 -30 -38 -40 -32
E -35 -38 -38 -41 -42 -45 -48 -40 -35 -48 -45 -35 -48 -35 -36 -41 -40 -33

F -22 -24 -24 -25 -25 -33 -33 -31 -22 -33 -33 -22 -331-22 -23 -28 -31 -231

G -39 -47 -47 -49 -47 -53 -55 -48 -39 -55 -53 -39 -55 -39 -41 -44 -48 -38
H -19 -26 -26 -28 -26 -32 -34 -27 -19 -34 -32 -19 -34 -19 -27 -23 -27 -18

1 -38 -45 -45 -47 -50 -50 -55 -45 -38 -55 -50 -38 -55 -38 -38 -46 -45 -37

J -33 -30 -30 -33 -33 -41 -41 -36 -33 -41 -41 -33 -41 -33 -34 -39 -36 -33

K -2 -21 -21 -24 -25 -28 -33 -24 -26 -33 -28 -26 -33 -26 -26 -28 -24 -21

L -26 -29 -29-27 -33-35-37-33-26-37-35 -26 -37 -26 -28 -32 -33 -25

Figure 2-12 Path 1 Methodology Scores for OSL=3

2-20



-7 -- 7-7 77K-

Path 1
Methodology Scores (OSL = 1) nc -

5 sof4 - uw ra r-
ca-4e jorJ

Methodology 4 Catesortwae

1 2 3 4 5 1 8 0 10 11 12 13 14 15 16 17 IS-

A 2 1 1 1 1 , 2 -1 3 2 -1 2 2 4 3 4

B 16 12 12 14 15 14 8 1 16 18 14 16 18 16 11 16 15 16
C 4 5 5 33_5 2 4 2 5 4 2 4 2 4 4 4

10 9 9 9 9 2 9 1 10 9 12 10 9 10 10 12 10 10

9 6 6 5 6 9 1 9 8 9 9 8 9 4 9 110 9
242020 21232123 24 23 2124 23 24 17 221919

G 5-3 - 1 1 2 1 1 5 1 5-1 6 2 4

H 2518181822 2222 23 25 22 22 25 22 25 13 27 23 24

1 6 .1-1 -1-2 4 5 6 1 14 6 1 6 2 4 5 5
J 1 14 1 1 1 1 14 11 15 13 11 15 11 6 11 14 9

K 18 23 23 22 23 26 23 26 18 23 26 18 23 18 14 22 26 21

L 18 159 19 18 19 18 12 18] 17 17

\ F, no Mt bdo I o

Figure 2-13 Example Use of ,atb 1 Methodology Tables

2-21

. ., ' .~ - . . _ , , , , . , - ..



-' T--

7--

-2



.r... -. ..

The first step in using design-phase considerations is to determine an Overall
Significance Level (OSL) value for that project. The approach to completing Step 1 is
identical to the one taken in Path 1 for the requirements phase. The same table and
worksheet are used: the Significance Level Table, figure 2-2 and the Methodology Selec-
tion Worksheet, figure 2-3.

In Step I the user begins filling out the worksheet, using the SL table and his knowledge
of the software project. Refer to paragraph 2.3.1 for the method of completing this
step, as well as an example.

For each column in the table, the user locates the description that best fits the con-
sideration for that column, then writes the corresponding SL number in the correct row

under SL on the worksheet. At the end of this process, the SL column of the worksheet
will contain ten values.

Next, the user weights the ten considerations by entering values in the Weight column.
If all considerations are weighted equally, a 1 is entered in each row of the Weight
column. If a consideration is critical, a higher weighting (e.g., 3) is assigned. Weight
assignment is subjective and dependent on the project manager's knowledge of the pro-
posed project, but is valuable in emphasizing certain considerations. As discussed in the
Path I description, the project manager will probably feel more comfortable assigning a
1 for the weighting value, but as he gains experience in using the tables, he will acquire
a feel for how weighting influences final methodology selection.

The Product column is completed on a row-by-row basis by multiplying the SL by the
Weight. For example if the SL is 1 and the weight is 2 the product is 1 X 2 = 2. The

* 2 is entered in the Product column. Each row on the worksheet is processed similarly,
resulting in entries for all considerations in all three columns.

The sum of the weight column is calculated and entered in the Sum row; the sum of the
product column is calculated and entered in the Sum row. The Overall Significance
Level (OSL) for the project is calculated as follows:

OSL -= Product Sum / Weighting Sum

Thus, if the Product Sum = 11, and the Weighting Sum f9, the OSL 1.22. Since
whole numbers are required, the fraction must be rounded up or down. To determine
this, the consideration is located with the highest weighting and its corresponding SL
becomes the determinant. (In the case where two or more considerations are weighted
with the same value, then use the highest of their corresponding SL's as the deter-
minant.) If the SL is 2 or greater, the OSL is rounded up; if 1 or less, it is rounded
down. For example, if cost has the highest %.ighting and the SL for cost is 1, we round
down. The final OSL, in this case, is rounded down from 1.20 to 1 and is entered on the

2 23

. . . ._..



worksheet.

2.4.2 Step 2 -- Select the Software Category

In Step 2 the user determines which software category best fits his proposed software
project. To accomplish this he uses the Software Categories Table, figure 2-6, and
enters the result on the Methodology Selection Worksheet. This step is identical to Step
2 in the Path 1 description, paragraph 2.3.2, and the example will not be repeated here.

Using the Software Categories Table, the user reviews the 18 software categories, using
his knowledge of the proposed software project, and selects the most relevant category. j
The software category number is entered in the Software Category row of the worksheet.

2.4.3 Step 3 -- Designate Candidate methodologies

In Step 3 the user matches candidate methodologies against desired design methodology
capabilities; i.e., the user knows which capabilities he'd like in a methodology (from a
de..sign-phase viewpoint) and this step allows him to select those methodologies that
comle closest to having those capabilities. To accomplish this, the user will need the
Path 2 Match Table, figure 2-15, and the Methodology Selection Worksheet, figure 2-3.

A ca3ndidate methodology will have approximately the same pattern of entries (where z
entri( indicate the capabilities present in a methodology) in a row of the Methodology.
section that the Software Category section has in the software category row. The key
letters for the candidates are entered on the worksheet.

For instance (see figure 2-16, Example Use of Path 2 Match Table), in software category
6, entries indicate structuring techniques for all subcolumns under the Decomposition
and Abstraction columns (i.e., the functional, data, and control, (under Decomposition)
and data, and process (under Abstraction) columns contain x's).

In the Mhethodology section, two methodologies have almost identical entry patterns, K

and 1. Thus, methodologies K and L become candidates for final selection and are so
noted on the worksheet. Perfect matches may not exist between a software category's
capabilities, and the methodology capabilities. For example, the B methodology is close
to matching and could be selected as a valid candidate, unless its absence of the control
devompos.ition striicture would critically affect the project. The user must look for rea-
sonable approximations in selecting candidate methodologies. Ie may select a set of
candidates having either less or more structuring techniques than those desired.

In general, completing Step .3 means the user has selected several candidate methodolo=

2-24 ...

L.



Path 2 Match Table
Structuring Techiniques

________ Decomposition ______ Abstraction

func data coot data pro
tion trol ceu
al_______

0 2 x __ _ _x _ _

F 3 x __ _ _x_ _ _x

T 4 x__ __ _ _

w x ______ ______

A 6 x x x x

R 7 x x x x

E 8 x x x x

C 10 x ____ ___ x x x

A 11x x x x x

T 12 _______ X_ ______x _____

E 13 x ____ ___x x x

G 14 ____ __x _______x

0 15 x ____ ___x

R 16 x x ___ ____x

y 17 x x ___ ____x x

18 x x x

M A x x x

E B _ _ _x x

T C x x x_ _ _

H D x x_ _ _

o E x x x

D F x x x _ _ _ _ _ _

0 G x x __ _ _ _

L H x x _ _ _x_ _ _

0 1x x x x

G J _ _ _ _ _ _ _ _ _x

y K x x x x

L x x x x x

Figure 2-15 Path 2 Match Table

2-25



____________Path_2_MatchTable 
2j

Structuring Techniques

________ Decomposition -_______Abstraction

fuac data coot data pro
tion trol cess

S _ __ _x __ _ _x _ _

0 2 x __ _ _x __ _ _ _ _ _

F 3 x x __ __

T 4 x __ _ _ _ _ _ _ ____ __ _ _ _ _ _ _ _ _ _

A 6 x x x x ea,0

E 8 x x x a
9 x __ _ _x _ _

C 10 x x x x
A 11 x x x x x
T 12 x ____ ___x_______

E 13 x ______ x x x

G 14 a x ______

0 15 x _______ ______ ______

R 16 a x _______ x______

Y 17 x x______ _ a

_____ 18 a x x

M A x x x__ _ _ _ _

E B _ _ __ _ _x x

T C x a a _ _ _ _

H D x x__ _ _ _ _

o E x x x x

0_ __ __ _ _ __ _ _ x x

G___ x jhe S

LI____ x x x

Figur 2-1 Examle.Ue of Path 2 Match Table

2-26



. . . ... ... '

gies having capabilities critical to the project's life cycle phase and software category.

2.4.4 Step 4 -- Compare Scores for Candidate Methodologies

In Step 4 the user scores each candidate methodology and determines the final metho-
dology for his proposed software project. To accomplish this, he will need the Metho-
dology Selection Worksheet and four figures.

He begins by finding the proper methodology score table for his Path and OSL. On
Path 2, he will use figure 2-17 if the OSL is 0, figure 2-18 if the OSL is 1, figure 2-19 if " -.
the OSL is 2, and figure 2-20 if the OSL is 3.

After accessing the correct table for his OSL, he locates the methodology letter under
the Methodology column, then follows that row to the column under the Software
Category number. The intersection of the methodology row and the software category
column contains the pre-calculated score for the candidate methodology. This score is
entered in the Score row, under the candidate methodology key letter, on the
worksheet.

The candidate methodology that best fits the proposed software project requirements
will be the one with a final score closest to zero. That is, if methodology D has a final
score of -35 and methodology F has a final score of -32, then methodology F is the best
fit.

2.5 METHODOLOGY SELECTION - Path 3

Path 3 differs radically from Paths 1 and 2 which use a project's software category and
significance to key tables that list capabilities and lead to eventual methodology selec-
tion. Path 3 provides a single table for directly selecting capabilities wanted in a
methodology. Although shorter, Path 3 should be used only when a project manager
has the experience to stipulate the specific capabilities he wants in a the final methodol-
ogy. It requires greater project knowledge on the part of the user, and should not be
used as a shortcut method by the less experienced project manager. A Path 3 overview
is shown in figure 2-21.

This Path is used when the project manager knows which capabilities are of overriding
project concern. As stated above, Path 3 ignores significance levels, software categories,
and does not require calculation of a score to select methodologies. Instead, the project
manager examines a table which lhsis ratings for capabilities and selects methodologies

-. based on the strength of those ratings.

2-27

2 .1..
.. . .. .. ............ _. ... . ... . ... ':-,



Path 2
Methodology Scores (OSL - 0),"'

Methodology Software
Category

1 2 3 4 5 6 7 8 9 110 11 12 13 14 16 10 17 181

A 20 21 21 19 19 24 21 22 20 21 24 20 21 20 16 23 22 21

B 33 34 34 37 34 37 40 37 33 40 37 33 40 33 25 36 37 34
C 3 23 23 20 20 26 23 23 23 23 26 23 23 23 16 23 23 23

D 28 28 28 26 26 30 28 28 28 28 30 28 28 28 22 31 28 27

E 27 27 27 27 25 31 30 31 27 30 31 27 30 27 19 30 31 27
F 40 39 39 40 40 40 41 39 40 41 40 40 41 40 29 42 39 38
G 22 19 19 20 20 24 23 24 22 23 24 22 23 22 13 26 24 22
H 42 40 40 41 41 45 44 45 42 44 45 42 44 42 27 47 45 42

24 21 21 21 18 26 24 26 24 24 26 24 24 24 17 25 26 22
J V 33 33 33 30 33 33 33 27 33 33 27 33 27 19 30 33 27
K 35 40 40 38 37 43 41 41 35 41 43 35 41 35 27 40 41 37
L 38 35 35 38 35 40 41 38 38 41 40 38 41 38 26 39 38 36

Figure ,-17 Path 2 Methodology Scores for OSL=0

-2--

.4

St ,



Path 2
Methodology Scores (OSL = 1)

Methodology Software
Category

1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18

A 1 1 1 -1 0 2 -1 1 1 -1 2 1 -1 1 1 1 1 2

B 14 14 14 17 15 15 18 16 14 18 15 14 18 14 10 14 16 15
C 4 3 3 0 1 4 1 2 4 1 4 4 1 4 1 1 2 4

D 9 88 6 786 7 96 8 9 6 97 97 8

E 8 7 7 7 16 19 8 1018 8 19 18 8 18 4 18 110 8
F 21 19 19 20 21 18 19 18 21 19 18 21 19 21 14 20 18 19-
G 3 -1 -1 0 1 2 1 3 3 1 2 3 1 3 -2 4 3 3

H 23 20 20 21 22 23 22 24 23 22 23 23 22 23 12 25 24 23
I 5 1 1 1 1 4 2 5 5 2 4 5 2 5 2 3 5 3
. S 13 13 13 11 11 12 8 11 11 8 11 8 4 8 12 8

K 16 20 20 18 18 21 19 20 16 19 21 16 19 16 12 18 20 18

L 19 15 15 18 16 18 19 17 19 19 18 19 19 19 11 17 17 17

Figure 2-18 Path 2 Methodology Scores for OSL=I

2-29

-. . .. . . .



Path 2
Methodology Scores (OSL =2)

Methodology Software
r,. Category

_____ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16

A -18 -19 1-19 -21 -19 -20 -23 -20 -18 -23 -20 -18 -23 -18 -14 -211-20 -17.
B -5 -6 -6 -3 -4 -7 -4 -5 -5 -4 -7 -5 -4 -5 -5 -8 1-5 -4
C -15 -17 -17 -20 -18 -18 -21 -19 -15 -21 -18 -15 -21 -15 -14 -21 1-19 -15
D -10 -12 -12 1-14 -12 -14 1-16 -14 -10 1-16 -14 -10 -16 -10 -8 -13 -14 -11
E -11 -13 -13 -131-13 -13 -14 1-11 -11 -14 1-13 -11 -14 1-11 -11 -14 -11 -111
F 2 -1 -10 2 -4 -3 1-32-3-.4 2-3 2-1-2-3 0

G -16 -21 -21 -20 -18 -20 -21 -.18 -16 -21 1-20 -16 -1-16 -7-18 -18 -16
H 4 0 0 1 3 1 0 13 4 0 11 4 0 4 -3 3 13 4
1 -14 -19 -19 -19 -20 -18 -20 1-16 -14 -20 1-18 -14 -20 -14 -13 -19 1-16 -16

K -3 0 0 -2 - .11 -3 - 1 -3 -3 -3 -3 -4 -1 -1
L 0 -5 -5 - -3 -4 -3 -4 0 3 - 0 -0 -4 -5 -4 -21

Figure 2-19 Path 2 Methodology Scores for OSL==2

2-30- -



Path 2
Methodology Scores (OSL =3)

Methodology Software
Category

1 2 3 4 5 0 7 8 9 10 11 12 13 14 15 18 17 18

A -37 -39 -39 -411-38 -42 -45 -41 -37 -45 -42 -37 -45 1-37 -29 -43 1-41 -36
B -24 -26 -26 -231-23 -29 -26 -26 -24 -26 -29 -24 -26 -24 -20 -30 1-26 -23
C -34 -37 -37 -401-37 -40 -43 -40 -34 -43 -40 -34 -43 -34 -29 -43 -40 -34

D -29 1-32 -32 -34 1-31 -36 -38 -35 -29 -38 -36 -29 -38- -29 -231-35 -35 -30

E -30 -33 -33 -33 1-32 -35 -36 -32 -30 -36 1-35 -30 -36 -30 -26 -36 -32 -301

F -17 -21 -21 -20 -17 1-26 -25 -24 -17 -25 -26 -17 -251-17 -16 -24 -24 -19
G -35 -41 -41 -40 -37 -42 -43 -39 -35 -43 -42 -35 -43 1-35 -32 -40 -39 -351
H -15 -20 -20 -19 -16 -21 -22 -18 -15 -22 -21 -15 -22 1-15 -18 -19 1-18 -15
1 -33 -39 -39 1-39 -39 -401-42 -37 -33 1-42 -40 -33 -42 -33 -28 -41 -37 -35
j -30 -27 -217 -27 -2 -33 -33 -30 -30 -33 1-33 -30 -33 -30 -26 -36 -30 -30

K -22 -20 -20 -22 -20 -23 -25 -22 -22 -25 -23 -22 -25 -22 -18 -26 -22 1-20

L -19 -25 -25 -22 -2272 2 -25 -19 1-25 1-26 -19 -25 -19 -19 -27 -2 -1

Figure 2-20 Path 2 Methodology Scores for OSL=3__

2-31



7. -77. %

FINAI
MEHOOLGPATH I

CAABLTISFIA

2-32-

~~~ -. A - -2:>-K .-


Figure 2-22 lists the capabilities and ratings, where applicable, for methodologies A

:" through L. The table is divided into three sections: requirements, design, and universal.

The ratings range from 0 to 3; 0 is the least effective rating, 3 is the most effective rat-

ing.

In following Path 3, the user locates the capabilities of overriding concern and finds the

methodologies which most effectively incorporate those capabilities. He may start with

any of the three sections, depending on his areas of greatest concern. A simple way to

select among candidate methodologies is to sum each one's ratings and select (among)

the onels) with the highest score(s). There are numerous ways to select methodologies

using the Methodology Ratings Table. They can be as simplistic as comparing the

scores of one capability or as complicated as comparing methodologies relative to a

user-defined fictional-ideal methodology, where the user chooses the individual capabili-

ties and their levels of support.

2.6 OVERALL CONSIDERATIONS

It is important to remember that the first two approaches (i.e., Path 1 and Path 2) for

determining the best-fit methodology for a proposed software project represent an

attempt to quantify and use three diverse areas of knowledge: (1) the Air Force missions

usage and expectations of software development projects, (2) our assessment of

specification methodologies available to the software developer, and (3) the project

manager's knowledge of what he wants in a methodology specification for his proposed
software project. The tables were constructed from samplings taken from the mission
surveys and to the extent the surveys represent the missions' software usages and

requirements, the results should be accurate. However, evaluation of the final methodol-
ogy selection should include a careful review of the characteristics of that methodology,
found in section 4.0. To find out the names of the candidate methodologies, refer to the
Methodology List Table (figure 2-23).

Likewise, Path 3 is even more dependent on the project manager's knowing which capa- .

bilitles would be most useful during the project's life cycle. This Path is highly subjec-
tive and is not recommended for use by an inexperienced project manager. It does,
however, provide an expeditious way to select a methodology. If the project manager
wanted to verify his choice, he could follow Paths 1 or 2 and compare the results with
his Path 3 selection.

It is the final responsibility of the user to ensure that a selected methodology is feasible.
Management, availability, hardware restrictions, or other considerations may make the 77
chosen methodology less feasible than another candidate. For example, automated tools
for a methodology may require a particular CPU to which the project manager has no

access. In this case, selection of that methodology is a useless exercise. The user must

exercise common sense in limiting his candidate choices to methodologies that fit within

2-33

0::

TABLE OF METHODOLOGY RATINGS

Capability Methodology
AB C D E F G H I J K L

"_.'-"_REQUIREMENTS.

state modeling 0 1 0 2 1 3 1 1 1 1 0 2
data flow modeling 3 0 2 3 0 1 0 0 1 0 2 2

control flow modeling 2 0 3 2 0 1 0 0 0 0 2 2

object modeling 1 3 0 1 3 1 3 3 3 3 3 0

timing performance spec 0 0 1 1 1 2 0 0 0 3 3 0

accuracy performance spec 0 2 1 0 1 2 2 2 0 3 0 0
DESIGN "_"'_

functional decomposition 2 0 3 0 2 1 1 2 2 0 0 2

data decomposition 3 0 3 2 1 1 2 2 2 0 2 1
control decomposition 2 0 3 2 0 1 0 0 0 0 2 1
data abstraction 0 3 0 0 3 0 3 3 3 0 1 3I
process abstraction 0 3 0 0 2 0 0 0 3 3 1 2

data base definition 1 2 0 3 1 3 2 2 2 0 0 3
concurrency/syncbronicity 1 0 0 1 2 1 2 3 1 3 3 0

module interface definition 1 3 0 1 1 2 2 2 1 3 3 3
formal verification 0 3 0 0 0 2 1 1 0 0 0 3
configuration management 0 0 0 0 0 0 0 0 0 0 0 2
completeness analysis 1 3 1 1 1 3 1 3 1 3 3 3

consistency analysis 1 3 1 1 1 3 1 3 1 3 3 3
Ada compatibility 1 2 2 1 3 2 1 3 1? 2 2
code behav.ior notation 0 3 0 3 2 3 3 3 2 3 0 3

U NIVE RSAL
prototyping 0 0 0 1 0 2 0 2 0 310 2
test plan generation 0 0 0 0 0 0 0 3 0 0 2 0
automated tool available 1 3 3 3 0 3 0 3 0 3 3 3

traceability 0 3 1 1 1 3 1 3 1 0 3 0 "'

transistion between phases 1 3 1 2 1 3 1 3 1 0 3 2
validation 2 3 1 1 2 3 1 3 2 3 3 2

usability 2 1 1 2 3 1 1 1 2 1 1 2
maturity 3 3 3 3 2 3 2 1 22 2 2

training/experience level 2 1 2 2 3 3 1 1 3 1 2 1

MIL-STD documentation 1 0 1 1 2 2I0 1 0 0 2 1

Figure 2-22 Path 3 ('a,,' bdmtie and ltatings

"-. 2-.t..

.... ..t . -.-.
,, .. ,..,. ..- -..... -. . . .-: - - . .-= -

METHODOLOGY and TOOL LIST

Key IAcronymn INaie
Mature Meth-odologies

A DSSD Data Structured Systems Design

B 1DM[Hierarchical Development Method

C SADT Structured Analysis and Design~ Technique
tools:

C a TA GS

D SA/SD Structured Analysis and Structured

Design (Realtime Yourdon)
to ol:

D a ARGUS
DMb EXCEL ERA TOR
D C ____ _ PROMOD

E SCR Software Cost Reduction - Navy

F SREM Software Requirements Engineering Methodology

G VDM Vienna Development Method

____ ___________ EvolvingMethodologies

H DCDS Distributed Computing Design System

I JSD Jackson System Design

J PMI5hey Process-oriented, Applicative,
____ ___________ InterpretableSpecificationLanguage

K SARA System ARchitect's Apprentice

L USE User Software Engineering Methodology

Figure 2-23 Methodology List Table

2-35]

D~a ARGU

his project's environmental constraints.

* 2.7 EXAMPLE USE OF GUIDELINES - C31 SYSTEM

. The first part of this section provides the guidelines for selecting a methodology and.
supporting tools for a project, by software category and with full consideration given to
life cycle phase.

The second part of this section is an example of how the guidelines and tables are used
-- in this case, for a C31 system.

The objective is to present several C31 examples using the three paths previously L
defined. A primary consideration imposed on each example will be compatibility with L

the Ada programming language. Of course, a project manager uses more than a single
consideration in determining which methodology best fits his future project. In deriving
the following C31 system requirements and design considerations, reference was made to
the ('31 mission appendix, Appendix C, actual requirements set forth in C31 RFP's, and
working knowledge of the requirements for C31 software and system projects gained by -.

*. Boeing Aerospace engineers during the last decade.

J, 2.7.1 Path 1 Example C 3 1 System

The example depicts development of C31 system software for interactive displays. The
example system is ground-based and receives data off-line that has been collected by air-
borne sensors. The overall system requirements are for a prototype system that will
process data collected by airborne sensors and classify types of ground threats and their
locations. Software requirements include: the ability to control and respond to cursor
location on display, the ability to access and change an associated data base, user
friendliness, and use of a high-order language, such as Ada. Additional requirements are
for a good data base management system and the compatibility of data products during
all pha.ses of the software development life cycle.

- The four steps for determining the proper requirements methodology are as follows:

2.7.1.1 Step 1 -- Choose the Overall Significance Level (OSL)

First, the user examines the Significance Level Table, figure 2-2, and fills out the Metho-
*" dology Selection Worksheet, figure 2-3. Note that for this example, the Significance

Level Table was examined and the following decisions made:

2-36

|:.:.:... :, .:..-,.: ':,... -. ..-........ ,.....,..-

.. A .. p. a.::. .* * ~ .-. ~-

-.. °. ---."

1. The Cost consideration was Some Cost Flexibility and rated a significance level
(SL) of 2.

2. The Criticality consideration was Nuisance Impact and rated an SL of 1.

3. The Schedule consideration was Normal Schedule Constraints and rated an SL of

4. The Complexity consideration was Moderate Complexity and rated an SL of 1.

5. The Development Formality consideration was Normal to Strong Contractor Con-
trols and rated an SL of 1.

6. The Software Utility consideration was Prototype and rated an SL of 0.

7. The Reliability consideration was Respond correctly to nominal conditions and
rated an SL of 0.

8. The Correctness consideration was functionality and constraints m.t and rated an -

SL of 1.

9. The Maintainability consideration was predict impact of changes and rated an SL
of 1.

10. The Verifiability consideration was Full complement of documentation; design
documentation updated too and rated an SL of 2.

These significance level values were entered on the worksheet under the SL column.
lFigure 2-24 is a completed worksheet showing the above SL values.

The ten considerations were weighted. Having no particular information as to the criti-
cal nature of the considerations, a normal weighting of 1 was assigned to all considera-
tions, except for maintainability, which was weighted with a 3 (since the project
manager might justly conclude that maintainability of the completed project cannot be
overemphasized).

The SL and weight values were multiplied on a row-by-row basis to fill in the Product
c(h11 rn.

The Weight and Product columns were summed. The weight sum was 12 and the pro-
duct sum was 13.

The Overall Significance Level (OSL) for the project was the product sum divided by
the weight sum. The result of this division was 1.08 and needed to be rounded up or
down to a whole number. The rounding rule, listed in paragraph 2.3.1, is two-part: (1)

2-37

. o

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED hierdC71 ,& 2ISAA4Y CZ5eSZle.J
LIIFECIYCLE PHASE ~ .REQUIRZEMENTS D--ESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

____________ FIGU'RE 2-2 X SL)

* ~~~COM\PLEXIJTY ______

DEVELOPM\ENT
FORMALLITY
SOFTWARE
UTILITY) 0
RELLA.BILIn'_ _ _ _ _ _ _ __ _ _ _ _ _ _ _

CORRECTNESS __________

\AJNT.A1N ABILITY' J____

VERIFIABILITY_____

SUM1 Z_______ 1___3

OSL =SUM.k OF PRODUCT /SUMI OF WEIGHT- 2-

SOFTNV ARE CATE(;ORY /

'k DU[DATE METHODOLOG IES

SCORE22

Figure 2-24 C31 Path 1 Example

* luse or Methroiology Selection Worksheet

2-38

the consideration is found with the highest weighting and its corresponding SL value
* noted, (2) if the SL is 2 or greater, the OSL is rounded up; if 1 or less, it is rounded

down.

In the example, the consideration having the highest weighting (of 8) was MAINTAINA-
BILITY. The corresponding SL was 1. Since the rule is to round down when the SL of
the highest weight (for a consideration) is 1 or less, the OSL was changed from 1.08 to
1. Note that if two or more considerations qualified as having the same high weighting,
we would have picked the one(s) with the highest SL as the rounding determinant.

2.7.1.2 Step 2 - Select the Best-Fit Software Category

The Software Categories Table, figure 2-6, is examined for the software category that
best fits the nature of the project.

Software Category 14, Data presentation, was selected as the best fit. The number 14
was recorded on the worksheet in the Software Category row.

* 2.7.1.3 Step 3 -- Designate Candidate Methodologies

- Referring to the Path I Match Table, figure 2-7, we examine row 14 in the Software
Category section. We note that row 14 contains two z'a corresponding to modeling
techniques and one x corresponding to accuracy specification. In the Methodology section
of the table, we search for rows that also contain z's for the same columns. Examina-
tion reveals that the F methodology matches exactly (i.e., it has an x in every column
required by software category 14 -- plus three additional is). Thus, an F is entered on
the worksheet as a candidate in the Key row. Methodologies A, B, C, D, E, G, H, I, J,
and K contain is for two of the columns. For the sake of brevity of the example, it is
decided that data flow modeling and accuracy specification are the most important
capabilities to provide. Of the methodologies listed above, only C provides capabilities
for both data flow modeling and accuracy specification. Thus, a C is entered on the
worksheet as another candidate methodology. Figure 2-25 shows the Path 1 Match
Table with the above rows circled to illustrate Step 3.

2.7.1.4 Step 4 -- Compare Scores for Candidate Methodologies

As discussed in paragraph 2.3.4, Step 4 requires the user to locate the proper methodol-
ogy score table that corresponds to the OSL of the project (the OSL is on the
worksheet). The OSL for the C31 example is 1 and figure 2-10, Path 1 Methodology
Scores for OSL of 1, is used. A C31 Path 1 example use of this table is shown in figure .1
2-26. "''-

-1

2"39

.. • . • - • . 4
° , .° .. , . , •

. -, -'-.'. , - -

Path 1 Match Table
Modeling Performance

Techniques Specific ation
- ~~Flow ""-"

State Object Timing Accuracy

Data Control

s 1 _ _ _ x x :;.

O 2 x x..

* F 3 _ _ _ _ _ _x x

T 4 x x x

W ,5 x x x x x

A 6 xx x x x

R 7 x x x x x .

E 8 x x x x

'9 x x _ X
C 10 x x x x x x

A 11 x x x x x
T 12 x x x_,_-__ -

E ,,-- x x xT ' x ,,_ _-_.-

G 14 x x x_"_._

R 16 x x x x

Y 17 x x x x

18 x x

M A x x x

E &i, x x

T C x x x x

H 10 _ _ _ _ - ni

F x x x x x x

L H xx _x,

0 _ _ _ x_ _'

G J x x x x
Y K [xxx x x x xi]:,.

L x X X

Figure 2-25 C31 Path I Example
Use of Match Table

2-40

Path I ,,

Methodology Scores (OSL = 1)

Methodology Softwarei Category

1_2_346 78 10 11 12 1 1 11

A1 11 1 -1 3 2-1 3 2 -12 4- 3 4
16 12 12 14 15 14 18 15 16 18 14 16 18 1 1 1 s 15 16

C 4 5 5 3 3 52442 5 4 2 4 2 4 4 4
D 10919 9 912 910 10 912 1091 1 12 10 10

9 66 1 5 6 9 8 109 8 9 9 8 9 9 10 9

F22 20 20 21 23 21 23 19 22 23 21 22 23 k22 17 22 19 19

5~ 1 -r|.

i-3 3.31 1 1 2P5 1 1ap1 -16 2 4
H 25 18 18 18 22 22 2-2 23 25 22 22 25 22 25 13 27 23 24
1 6 -1 -1 -1 -2 4 1 15 8 1 4 6 1 6 2 4 5 5

J11 114 114 13 15 13 15 14 11 15 13 11 115 11 6 11 14 9
K 18 23 23 22232623 2618 232618218 1422206 21
L 18j15 15 19 15 19 19 17 18 19 19 18_ 1 12 18 17 17

R5 Le-4+ev-s

Figure 2-26 C31 Path I Example
Use of Methodology Scores for OSL= I

2-41

.

:~ ... - ' -: .- ' -. .. . "I . - .- '-" .'-,."- . "- ,- . ." i.- " . ". .- " .. - .' " ., •
. , . ' . ,' -' -' , , - " . ,, -. , . " - , . . ' , ' e ' . i' - ' ." '- .' ' * ', -' 4 " ., " ' ' ' . , " . ' - ' " " "% J * " " .' . " "" " " * . - " -". " •-

The user finds rows C and F and follows these across to column 14. The intersections of
these two rows and the column contain the scores for the two methodologies, when
used for a project of software category 14, provided the OSL is 1.

The final selection is made based on which key letter's score is closest to zero. In this

example the scores are:

1. Methodology C score =4

2. Methodology F score = 22

The methodology whose score is closest to zero and that best fits the C3I project is
represented by the key letter C. To find out the requirements methodology selected, the _1
user refers to Methodology List Table, figure 2-23. Note that the methodology selected
is the Structured Analysis and Design Technique (SADT) methodology.

The final step is to read the SADT methodology description in section 4.0 and ensure
that it generally meets overall project environmental considerations.

Remember that additional capabilities listed at the beginning of this example included
compatibility of life-cycle products and compatibility with Ada. In reviewing the
description of SADT, we find the following:

1. SADT supports decomposition very well. The diagrams record both data and con-
trol flow information.

2. SADT has no basic incompatibility with Ada, although the diagrams it produces

do not directly map to Ada features.

3. TAGS and STRADIS are independent tool sets that support the SADT methodol-
ogy.

4. SADT is mature.

5. A manager can learn SADT techniques in less than a month, while a developer
may need from one to three months to fully understand all its applications.

From the above, the user may assume that SADT is moderately user friendly (doesn't
take long to learn, that it supports life-cycle phases (through use of graphics products),
that it is readily available and that it has supporting tool sets. Therefore, SADT can be
considered mature and low-risk.

Should the project manager be dissatisfied with the final selection, he may examine the
descriptions on his other candidate methodologies for one more compatible with his pro-
ject requirements. His other alternatives are to try the Path 2 approach (i.e., select the

2-42

.I')

candidate methodologies using design considerations), or the Path 3 approach (i.e., select ':

the candidate methodologies on the basis of those capabilities that are of overriding pro-
ject concern).

The point is, no set of tables can adequately address all the variables needed to select
methodologies for all future software projects and be correct every timc. This document
contains guidelines to aid the project manager in making his selection, but he must be
the final judge of that selection.

2.7.2 Path 2 Example -- C 31 System

The Path 2 example approaches methodology selection from the viewpoint of design
capabilities. The example is for an airborne software system for use on an unnamed
special purpose computer, but for which the software can be developed, in Ada, using a
standard Air Force CPU. Further, the C31 software must be interactive with remote
terminals, user friendly, incorporate a special-purpose data base, and support graphics in
near-real time.

The four steps for determining the proper requirements methodology are as follows:

2.7.2.1 Step 1 -- Choose the Overall Significance Level (OSL)

First, the user examined the Significance Level Table, figure 2-2, and filled out the
Methodology Selection Worksheet, figure 2-3. Note that for this example, the
Significance Level Table was examined and the following decisions made:

1. The Cost consideration was Normal cost constraints and rated a significance level
(SL) of 1.

2 The Criticality consideration was Mission Impact and rated an SL of 2.

3. The Schedule consideration was Normal Schedule Constraints and rated an SL of

2.

4. The Complexity consideration was Greater Complexity and rated an SL of 2.

5. The Development Formality consideration was Strong contractual controls; Formal
reviews and rated an SL of 2.

6. The Software Utility consideration was Real-time, Avionics, C! software and rated

an SL of 2.

2-43

. . . . -.

7. The Reliability consideration was Faults removed ASAP and rated an SL of 2.

8. The Correctness consideration was implementation validated against the design
specification and rated an SL of 2.

9. The Maintainability consideration was Extent of changes optimally localized and
rated an SL of 3.

10. The Verifiability consideration was Requirements through source code documenta-
tion always up-to-date and rated an SL of 3.

These significance level values were entered on the worksheet under the SL column.
Figure 2-27 is a completed worksheet showing the above SL values.

L
.

. The ten considerations were then weighted. Having no particular information as to the
critical nature of the considerations, all ten were weighted normally, i.e., with a 1.

The SL and weight values were multiplied on a row-by-row basis to fill in the Product
column.

The Weight and Product columns were summed. The weight sum was 10 and the pro-
duct sum was 26.

The Overall Significance Level (OSL) for the project was the product sum divided by
the weight sum. The result of this division was 2.6 and needed to be rounded up or
down to a whole number. The rounding rule, listed in paragraph 2.3.1, was two-part: (1)
the consideration with the highest weighting was found and its corresponding SL value
noted, (2) if the SL was 2 or greater, the OSL was rounded up; if I or less, it was
rounded down.

In the example, all the weightings were normal (i.e., 1) and thus all qualified as being
"highest" weightings. When two or more weightings qualify as being highest, we check
the corresponding SL's for their highest values. Thus, in this case, we find that two
considerations have SL's of 3 (maintainability and verifiability). Since the SL used as
the rounding determinant was 2 or more, rounding was up and the OSL changed from
2. 6 to 3.

2.7.2.2 Step 2 -- Select the Best-Fit Software Category

The user examined the Software Categories Table, figure 2-6, for the software category
that best fit the nature of his project.

F!-

2-44

- %.

METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED /Lf5C 3
LIFECYNCLE PHASE..............-REQIREENTS -&-DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

____________ FIGURE 2-2 X SL)

COST I/_ _ _ _

SCHEDULE 2.

COMPLEXITY, 2. _________

DEVELOPMENT
* ~FORMiALITY 2/2

* SOFTWARE/

UTILITY __ __ __ _ 2-

__ __ __ __ __ __ __ __ _ __ __ __ 2-

CORRECTNESS ________

OSL =SUM OF PRODUCT /SUM OF WEIGHT

S.OFTWNARE CATEGORY 2..

CANDIDATE METHODOLOGIES
KEY IcI K IL
SCORE -3 9 3 -.

Figure 2-27 C31 Path 2 Example

LUae of Methodology Selection WVorksheet .
A 2-45

Software Category 2, Event Control, was selected as the best fit. The number 2 was
recorded on the worksheet in the Software Category row. .

2.7.2.3 Step 3 -- Designate Candidate Methodologies

The user referred to the Path 2 Match Table, figure 2-15, and examined row £ in the j
Software Category section. He noted that row 2 contained three z's corresponding to
structuring techniques. He looked for rows in the Methodology section of the table that
contained x's for the same columns. His examination revealed that the L methodology
contained the same structuring techniques needed by the category 2 software, along
with additional techniques. No other methodology contained all three of the category 2
software techniques. At least two of the structuring techniques desired were supplied by
methodologies A, C, D, E, F, 1, and K. Since Ada was designed to use the concept of
abstractions and since one project consideration is Ada compatibility, the other candi-
date methodologies selected from the list above were those that supported the process
abstraction technique. The candidates then became E, I, K, and L. Figure 2-28 shows
the Path 2 Match Table with the above rows circled to illustrate Step 3. These key
letters were entered on the worksheet under the Candidate Methodologies section in the
Key row.

-.

2.7.2.4 Step 4 -- Compare Scores for Candidate Methodologies

As discussed in paragraph 2.3.4, Step 4 required the user to locate the proper methodol-
ogy score table that corresponds to the OSL of the project (the OSL is on the
worksheet). The OSL for the C31 example was 8 and figure 2-20, Path 2 Methodology
Scores for OSL of 3, was used.

The user found rows E, , K, and L and followed these across to column 2, the appropri-
ate software category. The intersections of these four rows and the column contained
the scores for the four methodologies (when used for a project of software category 2,
provided the OSL was 3).

The final selection was made based on which key letter's score was closest to zero. Fig-
* ure 2-29 provides an example of the use of this table. !n this example the scores were:

1. Methodology E score = -33

2. Methodology I score -39

3. Methodology K score -20

2-46

, ~~~............-... -
'-;'.'-:2 , .:;;::-.v :.--....:.;,) , : ::..: " ..-. --.:-.- :-.-.'?-, :,".::..v .-...- .-.,...-.,.-.,.-.',.-..:.,'-.-,-..'.. ..., -... ,- . '*

V7

____ ____ ____Path 2 Match Table
Structuring Techniques

_________ Decomposition Abstraction

tune data cont data pro
tion trot ces

0 2 x __ __

F

T 4 x _ _ _ _

'.4w 5 x__________ ____

*A 6 x x xx X

R 7 X _ _ __X x

E 8 x x xx
9 _ _ _x x _ _ _

C 10 x ____ ___x x x

A 11 X x x x X
T 12 _ _ _ _ _x x_ _ _ _ _

E 13 x ____ ___x x X

G 14 _______x _ ______x ______

o 1s x _______ ______ ______

R 16 x x _______x______

Y 17 x x ___ ____x x

__8___ __ x X.__ __ _ _ __ _ _ _

M A x x __ _ _ _

E B _ _ _ _ _ __ _ _ _ _

T C__ _ _ _ _ _ _ _

H _ _ _x

0 E x _ _ _ _ _ _ _ _ _ _ _

D_ _ _ _ _ _ _ _ _ _ __ _ _

Fiur G2 C3 Pah2Exml

UsLtMtc al

0 x 247

G

. X

. L x . . X X.4..

~~~~~~~~~Fgr .,2 C31 Pat 2 Example' ------ ~-~.-- . . . . . . . .



Path 2
Methodology Scores (OSL = 3)

MIethodology Soft- 're
Category -

1 (2 4 6 7 8 0 10 11 12 1131 4 1 16 ,1 7 18.

A -37 -39 -4 -38 -42 -45 -41 .37 -45 -42 .37 -45 -37 -29 -43 -41 -36
-24 -26 - 23 -23 -26 -26 -24 -26 -29 -24 -26 -24 -20 -30 -26 -23

S -34 -37 7 40 -37 40 -43 -40 -34 -43 1-40 -34 -43 -34 -9 -43 -40 -34
-9 2 34 -31 36 -38 -35 - 36 -29 -381-29 -23 -35 -35 -30

E -30 -33 -3?3 33 -32 35-36 1-32 -30 -36 1-35 -30 -361-30 -26 -36 1-321-30
"-F -17,, .2 -21 -€ f -26 -25 -24 .17 -25 .26 -17 -25 -17 -16 -24 -24 -19

G7 -41 -4 - i7 -42 -43 -39 -35 -43 -42 -35 -43 -35 -32 -40 -39 -35
-. , 1 -21 -. 2 -18 - - . -21 -15 -22115 .18 -19 -18 1-15

-. 3( - -39 -40 -42 -37 -33 -42 -40 -33 -42 -33 .28 -41 -37 -35
i -2,_,( --,o -2 -. -. -22 .22 ' .25 -23 -22 .-5 -2 -18 -26 -22, -20 --

li2 2 2 -2 -33- -30,-30 -3 -33 3 3 -30 -26 -36 -30 -30

-2 1 25 1-26 -19 -25 -19 -19 1-27 -25 -21

I_

Figure 2-"29 C'I Path 2 Example
Use of Methodology Scores for OSL-3

2-48

U71



4. Methodology L score = -25

Of the four methodologies, the scores for K and L were closest to zero. Those two
methodologies were developed and exercised in an academic environment and needed to
be closely inspected by the project manager to ensure they adequately addressed his pro-
ject requirements.

The methodology whose score was closest to zero and that best fit the C31 project was
represented by the key letter K. To find out which requirements methodology was
selected, the user referred to Methodology List Table, figure 2-23. Note that the metho-
dology selected was the System ARchitect's Apprentice (SARA) methodology.

The final step involved looking up the SARA methodology description in secticn 4.0 and
ensuring that it generally met overall project environmental considerations.

Remember that additional capabilities listed at the beginning of this example included:
data base management, user friendliness, compatibility of life-cycle products, and com-
patibility with Ada. If, in reviewing the description of SARA, the project manager was .__

dissatisfied with it, he had the same recourse described in the Path 1 C3I example,
namely that of reading the descriptions for methodologies E, , and L; and determining
whether one of them was a better fit for his project. His other alternatives were to try
the Path 1 approach (i.e., selecting the candidate methodologies using requirements con-
siderations), or the Path 3 approach (i.e., selecting the candidate methodologies on the
basis of those capabilities that were of overriding project concern).

Ns discussed at the end of the Path 1 C31 example, no set of tables can adequately
address all the variables needed to select methodologies for all future software projects
and be correct every time. This document contains guidelines to aid the project
manager in making his selection, but he must be the final judge of that selection.

2.7.3 Path 3 Example -- C 31 System

Path 3 is provided for the project manager who has learned from experience those capa-
bilities he wants in a methodology. Whatever the project, he approaches it from one of
three viewpoints: requirements, design, or universal capabilities.

For example, suppose he felt the methodology must be strongest in the requirements
capabilities, lie turned to figure 2-22 and examined the Requirements section of the
table. Inspection revealed that the F methodology was best and, he noted, its design and
universal capabilities were strong. Figure 2-30, C31 Path 3 Example Use of Methodology
[?atings Table, shows the selection process.

M-o4

2-49

. . . . . . . .. - . . . . . . . .. . . . . . .



TABLE OF METHODOLOGY RATINGS

Capabilty M ~~lg ...
A I" B I JD Iz E.j F) G J IJ zL

' -i REQUIREMENTS
i,."state modeling 0 1 0 2 1 3 1 1 1 1 0 2

I "data flow modeling 3 0 2 3 0 1 0 0 1 0 2 2"

control flow modeling 2 0 3 2 0 1 0 0 0 0 2 2 ;_'

object modeling 1 3 0 1 3 1 3 3 3 3 3 0

timing performance spec 0 0 1 1 1 2 0 0 0 3 3 0
accuracy performance spec 0 2 1 0 1 2 2 2 0 3 0 0

DESIGN /0
functional decomposition 2 0 3 0 2 1 1 2 2 0 0 2
data decomposition 3 0 3 2 1 1 2 2 2 0 2 1
control decomposition 2 0 3 2 0 1 0 0 0 0 2 1
data abstraction 0 3 0 0 3 0 3 3 3 0 1 3
process abstraction 0 3 0 0 2 0 0 0 3 3 1 2
data base definition 1 2 0 3 1 3 2 2 2 0 0 3
concurrenc)/syncbronicity 1 0 0 1 2 I 2 3 1 3 3 0
module interface definition 1 3 0 1 1 2 2 2 1 3 3 3
formal verification 0 3 0 0 0 2 1 1 0 0 0 3
configuration management 0 0 0 0 0 0 0 0 0 0 0 2

completeness analysis 1 3 1 1 1 3 1 3 1 3 3 3
consistencv analvsis 1 3 1 1 1 3 1 3 1 3 3 3

Ada compatibility 1 2 2 1 3 2 1 3 1 2 2 2
code behavior notation 0 3 0 3 2 3 3 3 2 3 0 3

UNIVERSAL 2Z Z.9_ 3/

prototyping 0 0 0 1 0 2 0 2 0 3 0 2
test plan generation 0 0 0 0 0 0 0 3 0 0 2 0

automated tool available 1 3 3 3 0 3 0 3 0 3 3 3
traceability 0 3 1 1 1 3 1 3 1 0 3 0
transistion between phases 1 3 1 2 1 3 1 3 1 0 3 2
validation 2 3 1 1 2 3 1 3 2 3 3 2
usability 2 1 1 2 3 1 1 1 2 1 1 2
maturity . 3 3 3 3 2 3 2 1 2 2 2 2
training/experience level 2 1 2 2 3 3 1 1 3 1 2 1

MIL-STD documentation 1 0 1 1 2 2 0 1 0 0 2 1
F3 A8 5 - -55-F" = 104- 2"2.4-23 5S5..,.

4 - 1 t-l -  .

Figure 2-30 C'l Path 3 Example
Use of Methodology Ratings Table

2-50

" a -. i.. .- .- .. .

"" i ~I- . .Z: " -- - -[



Suppose the project manager felt the design life-cycle phase was the most important, so
he looked for the methodology with the most strength in design capabilities. He

0 selected the L methodology and noted that it was weaker in the requirements area, but
moderately strong in the universal capabilities area.

Finally, suppose he decided that the universal capabilities were most important for his
project and chose two methodologies, F and H. Methodology F was already chosen as
the best candidate in the requirements capabilities area; methodology H was nearly as
strong in the universal area, stronger than F in the design area, but weak in the require-

* 'ments phase.

* " .~ The project manager may have examined capabilities, checking in all three areas
• -(requirements, design, universal) or in only one area. He may have summed scores of

selected capabilities for the three methodologies and selected the highest. If he did this
for all the capabilities, he found that the sums were: F = 55, H = 54, and L = 52. A
spread of three points wasn't much. His final resort was to refer to the Methodology
List Table, figure 2-23, where he found the names of his candidates, then read their
descriptions in section 4.0.

In the previous examples for Paths 1 and 2, we discussed how this document contains
guidelines to aid the project manager in making his selection, but that he must be the
final judge of that selection. This Path 3 example is no different. It is a short-cut tech-
nique for the experienced manager to use in finding a methodology for his project.
Again, the final decision is his and must be based on his experience in project manage-
ment.

. 2.7.4 Blank Worksheets

The following blank Methodology Selection Worksheets are included as "tear-outs" for
use by project managers during methodology selection. If all copies of the worksheet

..-. have been removed, figure 2-3 can be removed from this guidebook, reproduced, and
returned to the guidebook for the next user.

7 .1

2-51

• ~2-51 -

• .- o .I



v ~ R. ' T- - .- - - .--- -.-.

METHODOLOGY SELECTION WORKSHEET

S ~~SOFTWARE TO BE ACQUIRED ____________

LIFECY'CLE PHASE REQ.........REMENTS -_DESIGN

CONSIDERATIONS SL %EIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

___________ FIGURE 2-2 X SL)
COST__ _ _ _

CRITICALITY ______ _ _ _ _

SCHEDLE _____

COMPLEXIY ____

DEVELOPMENT 
I,

FORM\ALITY__________

SOFTWARE
UTILITY _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

CORRECTNESS

MNTIABLITY _____

* OSL =SUM OF PRODUCT /SUM OF WEIGHT-

7 SOFTWA-RE CATEGORY I
CA-NDID.ATE NIETHODOLOGIES

KEY I
SCORE



* METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
LIFECYCLE PHASE ........... -REQUIREMENTS -.DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

___________ FIGURE 2-2 _ _____ X SL)

COST ____

CRITICALITY_____

SCHEDULE ______

COMPLEXITY ____ ______

DEVELOPMENT
FORMALLITY_____ ______

SOFTWARE

SOFTWARE TEGOR

SCORRECNS NtAJN~l\.kl~lj

4'.)

Worksheet-2



METHODOLOGY SELECTION WORKSHEET

SOFT"'ARE TO BE ACQUIRED
LIFECY'CLE PHASE ............. REQUIRENIENTS -_DESIGN

*.CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

_____ _____ _____ FIGUrRE 2-2 _ _ _ _ _ _ _ XSL
COST _ _ _ _ _ _ _ _ _ _

* . CRITICALITY'
SCHEDULE_____

COM\lPLEXIY_________

DEVELOPMlENT
FORMIALITY______

* SOFTWARE

CORRECTNESS ___________

MLAINTAIJNABILITY_____ __________

VERIFIABILITY _____

OSL =SUMN OF PRODUCT /SUM OF WEIGHT=

SOFTWARE CATEGORY'
CANDIDANTE NETHODOLOGIES

KEY II
SCORE

Wo rksthee t-



-Ni t .

S METHODOLOGY SELECTION WORKSHEET

SOFTWVARE TO BE ACQUIRED
LEFECY'CLE PHASE............~ ___DESIGN

*CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1, 2,3) (1 =NORMAL) (WEIGHT

FIGUTRE 2-2 __ _____ X SL)

COST
CRITICALITY
SCHEDULE ______

COM\PLEXJIY_________

DEVELOPMlENT
FORMALLITY_______ _ _ _ __ __ _ _ _

SOFTWARE ___

SOFTAECATGOR

SCORRECTI E

rLITIAII)
VERIFLBELITI

Worshe t-

OSL SL70' OF PRDC SU OFWIH

SOTWR . -.O~



METHODOLOGY SELECTION WORKSHEET

SOFTW-ARE TO BE ACQUIRED

LJFECY'CLE PHASE.............. REQUIREMIENTS -DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

___________ FIGURE 2-2 _ ______ X SL)

COST__ _ _ _ _ _ _ _ _ _

CRITICALITY _____

SCHEDULE_____

COM\PLEXCITY _________

DEVELOPMIENT
FORMAkLITY_ _ _ _ _ _ _ _ _ _ _ ____

SOFTWARE

CORRECT.NESS _ _ _ _ __ _ _ _ _ _____

OSL =SUMI OF PRODUCT /SUM1 OF WVEIGHT-

SOFTWVARE CATEGORY'
CA.NDIDATE METHODOLOGIES

KEY I
SCORE

Workshieet-

.1Z 
. -



METHODOLOGY SELECTION WORKSHEET

SOFTWVARE TO BE ACQUIRED_________________________

LIFECYNCLE PHASE.............. REQUTREME.NTS --- DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1, 2,3) (1 =NORMAL) (WEIGHT

FIGURE 2-2 ______ X SL)

COST _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CRITICALITY
SCHEDULE ____

COM\PLEXIY_______ ____

DEVELOPM\ENT
FORMIALITY__ _ _ _ _______ _ _ _ _

SOFTW'ARE

SOFTAECATGOR

SCORREC.NS

NtAINAINAI~ln

VERIFLABEL.n

Workshee t-6



2
ii

- .. V

'~ ~ - .4 V**V.-. - * - . . .. .



METHODOLOGY SELECTION WORKSHEET

SOFTWARE TO BE ACQUIRED
LEFECY'CLE PHASE ........-- REQUIREMfENTS -_DESIGN

CONSIDERATIONS SL WEI0GHT PRODUCT
(0, 1, 2,3) (1 =NORMIAL) (WEIGHT

. ,. _ __ ___ ___ __ FIGURE 2-2 __ _ _ _ _ _ X SLI

COST ________ ____

CRITICALITY_____
'4-,. SCHEDLE__ _ _ _ _ _ _ _ _ _

- ~~COMfPLEXIT _______

DEVELOPM\ENT
FORM\ALITY
SOFTWARE

SOFTARE CAEGOR

SCORRECNS

4- N.ANAILT)

\ E~Worksheet- 7

OSL t.\lOF RODUT SU,\lOF WIGH

SOFTWRE CAEGOR4............' . . .LOIE

. . .

SCORE. .. .. -



' 70 -77 -- " -FC- -w 4-j V-~ a - - - .' ,-

METHODOLOGY SELECTION WORKSHEET

SOFTW'ARE TO BE ACQUIRED
~LIFECY'CLE PHASE ............. REQU'IREIMENTS -_DESIGN

CONSIDERA4TIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMIAL-) (WEIGHT

FIGURE 2-2 ______ X SLJ
COST
CRITICALITY______

SCHEDULE
COM\PLEXITY'
DEVELOPMlENT
FORMIALITY __________

SOFTWAARE

SOFTARE ATEOR

SCORRECNS

Nt4JNTAABI..n

VERIFLBILIT1

WoksIuM

OS SLN OF PRDC SU OF WEIGHT.- .. .

-------------------- TWARE.4.. .. .CATEN~l

CA DD T ....-....-.....
"ITY. .. . . . - ,..1



METHODOLOGY SELECTION WORKSHEET

SOFTWA.RE TO BE ACQUIRED
LIT ECY)CLE PHAkSE ............ _REQUIREMENTS -_DESIGN

CONSIDERATIONS SL WEIGHT PRODUCT
(0, 1,2, 3) (1 =NORMAL) (WEIGHT

~: :~: FIGURE 2-2XSL

COSPET Y_____ _____

* VERIICALITY

S=SCUM FPODC SMO WIH

SOFTWVARE CTGR

SCORRECNS

NtAJN.4JN~~lL-4

VERIFLBILIT)

OSL UNI F PRDUC SUMOF WIGH

Workslice t-9



.. .- 7 .. .

3.0 HOW TO SELECT AVAILABLE AUTOMATED TOOLS

3.1 INTRODUCTION

Automated tools can provide invaluable assistance during the requirements and design
phases of the life cycle. They can assure consistency of identifiers and terms, enforce
both documentation and project standards, and enhance tracking of project progress.
The tools can also free the project manager from tedious, repetitive tasks.

The choice of selecting automated tools is trivial if a tool set was developed hand-in-
hand with the methodology. That situation exists for the DSSD, HDM, SPEM and
DCDS, PAISLey, SARA, and USE methodologies.

The choice of selecting automated tools may require comparing several alternative tool
sets developed for use with a particular methodology. That situation exists for SADT
and SA/SD (Yourdon Methodology). Section 3.3 explains how to compare alternative
tool sets.

The choice of selecting automated tools from available generic tools becomes necessary
when no specific tool set supports a methodology. Generic tools support various
software engineering tasks. Section 3.4 discusses the selection of generic tools.

- .: 3.2 TilE SELECTION PROCESS

The process of selecting tools is guided by a set of questions that determine which of the
three situations described above is pertinent. Figure 3-1 is a schematic representation of
the process. The process is set forth in the following text.

Question 1: Does a tool set exist that is integral to the project's intended methodology?

If the methodology is either DSSD, HDM, SREM or DCDS, PAISLey, SARA, or USE,
the answer is YES, and the tool set is described in section 4.0. Proceed to question 3.

If the tool set is not integral to the methodology, the answer is NO, proceed to question

3-1" '

A



Schematic of Selection Process

BEGIN

NNO

Choose 1
Generic IEXIT
Toolsj

Figure 3-1 Tool Selection Process

3-2



Question 2: Do tool set alternatives ezist that support the project's intended methodol-".,? ogy? . ."

If the methodology is either SADT or SA/SD (Yourdon Methodology), the answer is
YES. Use the comparison and selection process described in section 3.3, and then
proceed to question 3.

If no tool set alternatives exist, use the selection process for generic tools described in

• .section 3.4. (Note that project environment usability is tested by various criteria in the
selection process for generic tools.)

Question 3: Are the tools usable in the project environment?

Typical considerations involved in answering question 3 are:

- Is the specified CPU or hardware readily obtainable?

- Are the costs involved (time and money) reasonable for the project?

- If the specifications are to be developed by a team, do the tools allow and control
sharing of data among the team members?

If the answer to question 3 is YES, then the tool selection process is complete.

If the answer is NO, use the selection process for generic tools described in section 3.4.

3.3 COMPARISON AND SELECTION PROCESS FOR TOOL SET
ALTERNATIVES

The considerations involved in selecting one set of tools over another reflect the follow-
ing:

e Cost and schedule considerations:

- What is the cost of the software license for the tool set?

- What will training cost in terms of time and money?

What will be the hardware costs associated with the tool set?

- Is the hardware needed readily available or obtainable?

3-3



- Software considerations:

- Does the complexity of the project and its development formality warrant
automated support?

* Quality considerations:

Which is most important: reliability, correctness, maintainability, orverifiability?

- How do the tool set alternatives compare in supporting that most important
consideration?

-- ow do the tool set alternatives compare in supporting the other quality
considerations?

The evaluations in section 4.0 are limited to four tool set alternatives: (1) TAGS, (2)
ARGUS, (3) EXCELERATOR, and (4) PROMOD, whose descriptions can be found in
sections 4.16, 4.17, 4.18, and 4.19 respectively. When a selected methodology is associ-
ated with one of these tool sets, the corresponding description should be analyzed in
terms of the most important considerations of the project. In the case where the project
manager wants to evaluate other tool sets (e.g., tool sets that have become available
since publication of this guidebook, or that have been enhanced with new capabilities,
etc.), he may find it useful to produce results in the standardized format found in sec-
tion 4.15. This will facilitate comparing his new evaluations against those in the guide-
book.

In addition to commercially available tool sets, some companies have developed tools for

their own use (e.g., STRADIS). Such tools are not usually available to other users, but

may be considered as a viable alternative tool set when that company is being evaluated
by the Air Force for a particular project.

The alternatives for the SADT methodology are TAGS and tool sets developed by large
companies for their own use (STRADIS is an example). The alternatives for SA/SD are
ARGUS. EXCELERATOR, PROMOD and Hughes has a tool set based on the Yourdon
methodology.

Thus, it is a good idea to review the current promotional literature on a particular tool
set as part of the selection process.

3.4 SELECTION PROCESS FOR GENERIC TOOLS

3-4

.............................................. ' 2,-
.. . . .* -*,.V.*. . . *,. -'2 * ' -



The purpose of selecting a set of generic tools is to create an automated environment
that is of direct benefit to the personnel developing the specifications. If the tools are
difficult to use or to coordinate, then their potential benefits are reduced. It is therefore
important that a project manager fully evaluate a potential set of tools. One approach
to evaluating tools (as mentioned in section 3.3), is to follow the format in section 4.15
of this guidebook to assure that relevant questions are asked about the tool set.

As with methodology selection, the significance of the project should fit the level of sup-
port the tools provide. Although some form of automated document preparation or con-
trol is always useful, less significant projects need less support than more significant pro-
jects.

* Figure 3-2 lists generic tools that could be useful in an automated environment for
specification development.

A well-known example of a generic tool that is versatile enough to have been used on
many projects is PSL/PSA. It combines the function of a Data Flow Checker with
some of the functions of a Project Database Management System. An evaluation of
PSL/PSA can be found in section 4.20.

An example of a generic tool is BYRON, recently released by Intermetrics. It is a PDL
language system, intended for use with and in an Ada environment, but has not been
available long enough to be considered "mature." This newness is one of the factors
that must be evaluated when selecting a generic tool.

-: Figure 3-.3 lists criteria for rating individual tools. These criteria provide a checklist of
considerations that should be reviewed when selecting generic tools. There are many
generic tools available, and a listing and evaluation of them is beyond the scope of this
guidebook.

. . . . -- '- ,: , - .- . d . . -, , . ' - ' - ' . - ' " . " ." ' . • ' ' "."-'



rr . r.. ' --..--.....- , - - -

GENERIC

TECHNIQUE DESCRIPTION ADVANTAGE DISADVANTAGE

Project Database A database and tools Provide. positive visibil- Requires resources for

' Management System used to manage the ity of project status, establishing and main-

results (documents, convenient query and taining database. Corn-

specifications) of a pro- reports of specifications, plicates developer and

ject. and access control. system interface.

Data Flow Checker Tests completeness and Assists specification Requires training in

consistency of defined validation process and preparation of input

producers and consu- long-term maintenance and comprehension of

mers of data, the flow of documentation, results.

of data between pro-

ducers and consumers,

and the relationships

between data elements.

Formal specification The use of a formal, Specifications can be Extensive training in

language computer-processable described by effect formal logic and

notation for expressing rather than procedure. mathematics and

specifications. Specifications can be experience necessary.

statically and dynami-

cally analysed for com-

pleteness and con-

sistency.

Interactive Graphics Use of computers to Easy to modify. Requires relatively

produce, maintain, and larger amounts of com-

change such two- puter overhead to con-

dimensional graphical tain graphics software.

images as data flow

diagrams and structure

charts.

PDL Language System The use of a stylized or Design can be com- Tempts designer into

formal notation to pleted and verified coding an implementa-

express a detailed before coding begins. tion rather than creat-

design. Assists partitioning of ing a design.

design into units to be

coded by a single indivi-

dual. Enhances com-

munication between

designer and program-

mer .

Figure 3-2 GENERIC SPECIFICATION TOOLS (part I of 2)

3-6



GENERIC

TECHNIQUE DESCRIPTION ADVANTAGE DISADVANTAGE

Simulation or prototyp- A model, used to Most elective technique Relatively expemsive

Ing predict performance, for studying transient and time-consuming to '-

check or demonstrate behavior, develop accurate

functionality, determine model(s).

impact of change, or

obtain information on

system capacity.

Static Analyzer Detection of errors Cost of error detections Efectivenen is limited

through examination of is low. by the known proper-

specifications written in ties that can be

a formal notation, checked.

Errors that can be

detected are: syntax,

misspellings, missing

statements, and

improper sequencing of

statements.

Specification Tree Automated generation Provides a layered road- May ignore more impor-

of a display of the map of documents. taut relationships.

hierarchical relation-

ships within a related

set of documents.

Traceability Analyzer A systematic search to Assists in verifying Tedious for developer

ensure that the con- software development to establish relation-

tents of two results or products meet require- ships.

documents have the meats (e.g., verifying

claimed relationships. design against require-

ments).

Word Processing The use of a computer Easily supports changes Requires investment in

to store a document in to documents. hardware and training.

a digitized form so that There is a lack of inter-

it may be edited, mani- change standards.

pulated, and stored.

Figure 3-2 GENERIC SPECIFICATION TOOLS (part 2 of 2)

3-7

. ," . .- '.- ." - .. ,.. - -. . ..- .. . . . . . . .. . . .. , - - , , . , , . , . • . , •,."
4.4.%



1
Criterion Definition Ii

Technical Feasibility An assessment of the technical problems of

integrating a tool into the existing environ-

ment. Considerations include unusual data

requirements or overly large processing or

storage demands.

Payofe/Coutribution An assessment of relative usefulness of a

tool.

Estimated Cost An assessment of cost which includes

acquisition, integration, and usage costs.

Life-cycle data An assessment of the specification life cycles
in which the tools are most useful.

Data Base Compatibility An assessment of the dificulty in transfer-

ring data from this tool to other tools

already chosen.

Usable Output An assessment of the value of the outputs

to a specifier or other tools.

Side Effects An assessment of positive or negative side

effects produced. For instance, a tool may

generate secondary output that greatly

simplifies the tasks of other tools; or a tool

may impose inordinate timing, data,

storage, or format burden.

Costs/Schedule An assessment of cost/schedule effects dur-

ing the life cycle as a result of incorporating

the tool into the environment.

Management Benefits An assessment of the management benefits

resulting from use of the tool.

Required Training An assessment of the cost and duration of

specialized training needed before using the

tool.

Figure 3-3 RATING CRITERIA FOR GENERIC TOOLS (part I of 2)

3-8

::: 3-8": "

• .. . . . . . .- 5



|-o..

Criterion Definition

Usage Constraints Am assessment of the dependency of the

tool on specific hardware and software.

Required Computer Resources An assessment of the processing and storage

requirements rnf a tool.

Level of Human Interaction An assessment of the level of human

interaction (volume of data entered, number

of keystokes, etc.) required for use of the

tool.

User Interface An assessment of the user-friendliness of a

tool and the compatibility of its interface

with other tools in the environment.

Support of Modern Practice An assessment of the extent to which a tool

supports modern specification practice.

Support of Unique Project Needs An assessment of the applicability or exten-

sibility of the tool to support unique project

requirements not addressed by other tools.

Source Code Availability An assessment of the availability of a tool's

source code for evaluation and/or

modification.

Figure 3-3 RATING CRITERIA FOR GENERIC TOOLS (part 2 of 2)

- _..°.. -

W"R3--



77-77

4.0 Methodology and Automated Tool Descriptions

4.1 Organization of this Section

This section contains descriptions of methodologies and tool sets in a standard format.
An outline of the format used for methodologies with a description of the contents of
each item follows as section 4.2. The methodology descriptions are contained in sections
4.3 through 4.14. They are arranged in the same order as they appear in the tables of
section 2.0.

A description of the format used to describe tool sets is contained in section 4.15. The
individual descriptions are contained in sections 4.16 through 4.19. A description of
PSL/PSA, a generic automated tool for requirements analysis, is found in section 4.20.

To make it easier to identify what methodology or tool set description you are reading,
you will find its ac-onym and key on the top of each page. The acronym is centered;
the key is to the right. Notice that the key for a tool set consists of an upper case letter
followed by an underscore followed by a lower case letter (eg., Xx). The upper case
letter identifies what methodology the tool set supports. The lower case letter
differentiates the tool sets themselves. So, the tool set key of Db informs you that the
tool set supports methodology D and there is at least one alternative to consider.

4.2 Methodology Description Format

1. General Aspects

A. Identification

Gives the name and acronym of the methodology and identifies the
developing/supporting organization.

B. Overview

Contains a short description of the salient features of the methodology.

C. 'Identifies the specification life cycle phases supported:

Requirements Analysis, Architectural Design (intermodule communication,
data structures), or Detailed Design (module functionality).

Complementary methodologies will be listed for phases not supportod.

4-1

Ile.........- .... ..........................



D. Software Categories

Lists standard software categories which are compatible with this methodol-
ogy.

Category
1 Arithmetic-based
2 Event Control

3 Process Control

4 Procedure Control
5 Navigation

6 Flight Dynamics
7 Orbital Dynamics

8 Message Processing
9 Diagnostic S/W

10 Sensor/signal Processing
11 Simulation
12 Database Management

13 Data acquisition
14 Decision/planning aids
15 Data presentation
16 Pattern/image processing
17 Computer System Software

18 S/W development tools

E. Suitable for systems of size:

- Small (<2,000 lines of code)

- Medium (2,000 - 10,000 lines of code)

- Large (> 10,000 lines of code)

2. Technical Aspects

A. Primary approach -

For a requirements methodology, the approaches are:

- flow-oriented,

4-2- . A



- object-oriented, and

- state-oriented.

For a design methodology, the approaches are:

-data-structured,

- decomposition,

- encapsulation, and

- programming calculus.

B. Supports "-__ _ _
, Traceability

,,,:.. Functional h ierarchy/decomposit ion'-
-- Data hierarchy/data abstraction

Interface definition (

Database definition--

Data flow
Sequential control flow
Conc urrency/parallelism
Formal program verification
Iterative development

C. Workproducts

Are they relevant to MIL-STD documentation?

a. Textual

Descriptions of reports, documents produced.

b. Graphical

Descriptions of diagrams produced.

D. Performance Specification

Does the methodology have the capability to specify or test timing and/or
accuracy constraints that apply to individual system functions?

4-3



- . . - " --"

7,F wln -

E. Operating Qualities Specification

Does the methodology have the capability to specify the following con-
straints?

- Man/machine interaction

- Fault-tolerance

- Portability

- Reusability

- Security

F. Ada compatibility "-_

Ada Feature Supported

Packages X

Tasks

Generics

Exception Handling C

Types _

Representations
X indicates support of feature.

C indicates conflict with feature.

G. Quality Assurance

How does the methodology check or enforce: -: -

Consistency ?

-- Completeness?

- Validation ?

H. Independent of

Are the resulting specifications independent of:

Implementation Language ?

7L-7

4-4

- ,.." -,..:j,: ,.- .', .'.., . " • , .. ..' ." " ".." - .. - ", - . -. "- ' .- ... . . + " . . .... '- .. ;. .' .



F^

- Hardware Architecture .

- Operating System Architecture ?

3. Support Aspects

A. Automated Tools

Describes which automated tools are a 'ailable.

N: B. Language

Identifies the language used in the following specification phases and its
degree of formality.

- Requirements Specification

- Architectural Design

- Detailed Design

4. Management Aspects

Does the methodology support project, technical, or configuration management?
How?

5. Usage Aspects

A. Equipment/Facilities Needed to use

Identify specific hardware and software (operating systems, graphics pack-
ages) required to use the methodology or associated automated tools.

13. Usability________ ______

Level Methodology7
Easy to Use __________IModerately Easy to Use ._-...,
Moderately Difficult to Use ___.__._-'__.

Difficult to Use _ _ _

C. Extent of Use l:7

Is the methodology mature? Has it been used outside the developing organi-
zation' How much? £-1

4-5

A- -'X A I 7.

4 '4.4



- .- . . .i . ~ F Y ~ * - J -

S. Transferability

A. Availability

Is the methodology in the public domain, commercially available, etc.?

B. Training Available

- Public documentation :

- Proprietary documentation

- Consultants

- Seminars - scheduling and cost, if known

, C. Training and Experience Required

___..___ Training/Experience Needed..-
months USER MANAGER ORGANIZATION

1-3
3 -6 1]Z

The table entries reflect the amount of training and experience time
required to use the methodology effectively. A USER is an individual who
develops or assists in developing requirements and/or design specifications.
An ORGANIZATION is a group of users developing specifications as a team.

D. Primary Source of Documentation

List references.

4-6

- h
°



--. - 2.,°

DSSD key:A

4.3 DSSD Methodology Description

1. General Aspects

A. Identification
PR.•

DSSD - Data Structured System Design

Ken Orr & Assoc, Inc
1725 Gage Blvd
Topeka, KS 66604-3379
(913) 233-0653
(800) 255-2459

B. Overview

DSSD is a data-structured development methodology. The basic idea is to
define outputs and their structure and then to work backwards to inputs.

The basic technique is to construct hierarchically structured diagrams called
assembly line diagrams that read left to right instead of top to bottom. The
diagrams can be structured to represent a hierarchy of processing steps,
events in time, data flow, or data structures. An example of an assembly
line diagram which illustrates what constitutes requirements definition as
recommended by DSSD is found below.

Logical Application Context
LRequirements 'Application Functions

-Application Results
Requirements

Definition
N' DConstraints

Physical Alternatives
Requirements .Ranking

'Selection

The methodology uses entity diagrams to model the software system and its .
environment and to model functional flow. Detailed design for processes
(transformations) is done through a variant of Warnier-Orr diagrams in
which the process is always found at the leftmost bottom edge of the
diagram.

4-7

-~~~~~~~......,'...".""'-'-... .. " . "-. ... -.... ".. --..-. '..-"."'". . -. "-"-"
...-..- -- - - - . . . . • -.- .- ..... -..... .. -' .. 2.. - ... . .,,.?, ..-. .. - .. .' .. "..... , ." "-''- .'. . ". '." "-",' +  "',' " " ."?- """ "  -. ; . . ,. " ¢ ., .'... .' 4. * .. - ,', " . . • ,, -+,, " , I,",? N'

- - | " - - -%



DSSD keg:A .

C. Life cycle phases supported:

All three phases (Requirements Analysis, Architectural Design, and Detailed
Design) are addressed.

D. Software Categories

#i category I
I Arithmetic-based
, Diagnostic Software

12 Database Management

14 Data presentation
17 Computer System Software

18 Software Development tools

E. Suitable for systems of size:

Can be used for development of any size system.

2. Technical Aspects

A. Primary approach .

Dataflow-oriented for requirements; data-structured for design.

B. Supports Caablt._"______

Capability
Traceability

X Functional hierarchy/decomposition

X Data hierarchy/data abstraction
X Interface definition
X Database definition
X-.1 Data flow

X Sequential control flow
X Concurrency/parallelism -doesn't prohibit

Formal program verification ..-

Iterative development

4-

4-8

--. ,

" " ". ." "" . .' " ", "' ,"" "" ". " . " " ,' " " " "€ ,"L " " ," "" . . : ". , ," " " "" .""' ."" " , ' " "", ." ".''. .' . "' . ,



DSSD key:.A

C. Workproducts

Some of the workproducts (assembly line dataflow diagrams, entity
diagrams) can be used in preparation of MIL-STD software developmentdocumentation. !:.

a. Textual

Structured requirements definitions, database design, structured pro-
gram design

b. Graphical

functional flow diagrams
entity diagrams
assembly line diagrams for data flow
input/output diagrams
event structures --

D. Performance Specification

Performance requirements for specific components is not addressed.

E. Operating Qualities Specification

Operating qualities such as man/machine interaction or portability are not
addressed.

F. Ada compatibility

Ada Feature Supported
Packages X
Tasks X

Generics C
Exception I-an dling X

Types X

Representations _.____-.___.

G. Quality Assurance

Structured walkthroughs provide manual validation of completeness and con-
sistency of requirements and design.

4-9

,. > -.:..? .-. ,...,.,,.-..,,p ..: .,:-,:.-,-,,.,~~~... ..,.-..-.... ..-.... .-...-..... . ,. .......... - . .. . . ,.* -, -:,-,,

["-. ": .2 " : " . ". " -, .. -. '. '' - .' "- -'" - -' . "' - -'" .. - " ."". " '."' . ...'. . '"'..' -- .. . .. ,, " ".\ ''



-- , . ° "

DSSD key:A

H. Independence

The methodology is independent of planned implementation language,
hardware architecture, and operating system. However, the tools available
assume the implementation language will be COBOL. Tools and an orienta-
tion for Ada are under development.

3. Support Aspects

A. Automated Tools

The tool set available for DSSD is called STRUCTURE(S). It draws
diagrams on a lineprinter and provides a COBOL code generator.
STRUCTURE(S) is available for IBM, Honeywell, Univac, and Perkin-Elmer
CPUs.

B. Language

All languages used for requirements specification and design are graphical.
Each language is based on some form of the Warnier-Orr diagram. .

S.4. Management Aspects

The tools provide a project management tool for version control. Technical (qual-

ity) management is provided 'y recommending structured walkthroughs.

5. Usage Aspects

A. Equipment/Facilities Needed for DSSD use:

Although diagrams can be produced manually, use of the tools in
STRUCTURE(S) requires an IBM, Honeywell, Univac, or Perkin-Elmer CPU
and a lineprinter.

B. Usability

Level Methodology
Easy to Use

Low Moderately Easy to Use X
Moderately Difficult to Use

Difficult to Use--________

4-10



7 AD-Ai62 457 
SPECIFICATION 

TECHNOLOGY GUIDEBOOKU 
BOEING AEROSPACE 

2/3
CO SEATTLE MA D R ADDLEMAN ET AL. AUG 35

'-~~RUN S RDC-TR-85-135 F28682-84-C-8073
UNCLASSIFIED F/G 9/2 NI



k-p

1111I. III1 I 2.2

1111.25 Wf' 4  111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A



DSSD key:A

C. Extent of Use

The methodology is mature. It has been used by many different organiza-
tions in developing information systems projects.

6. Transferability ; ,

A. Availability

The methodology and tools are commercially available from Ken Orr and

Associates.

B. Training Available

Ken Orr and Associates provide proprietary documentation, consultants, and
privately arranged and regularly scheduled public seminars. The per-person
fees for seminars are in the range of $500 to $1000.

C. Training and Experience Required

_______ Training/Experlence Needed

months USER MANAGER ORGANIZATION
< 1 X _ _ _ _ _ _ _

,'- 1 - 3 •_ _.-.'_'

3-6 "-6_'-'_'

>6 X_ _'_"

D. Primary Source of Documentation

Ken Orr and Associates

,7-*. U

4-11

1 _%7



-~DSSD key.A

Also see:

References

[Brackettl0831.
Michael H. Brackett, Developing Data Structured Information Systems, Ken
Orr & Associates, Inc, Topeka, Kansas, 1g83.

[OrrlO771.
Ken Orr & Associates, Inc., Data Structured Systems Development Metho-
dology, Ken Orr & Associates, Inc, Topeka, Kansas, 1g77.

[Orr198 1].
Ken Orr, Structured Requirements Definition, Ken Orr & Associates, Inc,
Topeka, Kansas, 1q81.

4-12

S . .- . a



HDM ke10B

4.4 HDM Methodology Evaluation

1. General Aspects

A. Identification

HDM - Hierarchical Development Methodology
-,:,J

Computer Science Laboratory
SRI International
Menlo Park, CA
(415) 859-4771

B. Overview

!'' HDM combines the data structured and algorithmic refinement approaches

to design. A specification written in HDM is a hierarchy of abstract
machines. The methodology assumes that the requirements for the software
system have been captured in a model and can be written as a top-level
specification known as a TLS.

The TLS describes the system's external (observable) behavior and it is writ-
ten a nonprocedural language called SPECIAL. Beginning with the TLS, a
hierarchy of abstract machines is produced by providing mappings from the
representations in the higher level machine to the representations in the
lower level machine. Each lower level machine provides more and more con-m crete detail. Eventually, the lowest level can be translated into an imple-

mentation language.

The system was primarily developed for the purpose of verifying security
properties of software. The automated tools support formal verification of
design. SRI is expecting to make an enhanced HDM available in March
1985, which will be Ada-compatible (concurrency properties planned),
through the DoD Security Center.

C. Life cycle phases supported:

The two design phases are supported. HDM assumes a requirements
specification has already been written.

17A
4-13

V K1-K-.-.....<.-%



. ..

M1M key.f;

D. Software Categories

# category
6 Flight Dynamics
7 Orbital Dynamics

8 Message Processing

10 Sensor and Signal Processing
13 Data Acquisition

15 Decision and Planning Aids

16 Pattern and Image Processing

E. Suitable for systems of size:

The system could be used to develop systems of any size. However, the use
of HDM for a very large system might be unwieldy. In such a case, it would
be appropriate to use HDM in developing components for which it is neces-
sary to verify security properties.

2. Technical Aspects

A. Primary approach

Combines data-structured and decomposition approaches to design.

B. Supports "___

Capability
X Traceability - (Each level explicitly

mapped to the lower level)
.Fnt nal hierarchy/decomposition

X Data hierarchy/data abstraction
X interface definition

Database definition
Data flow

Sequential control flow
X Concurrency/parallelism (doesn't

prohibit, explicitly support in future)
X Formal program verification
X Iterative development

C. Workproducts

Not directly relevant to MIL-STD documentation.

S.. - 14 .



HDM key:B

a. Textual

Produces a series of formal specifications written in SPECIAL which
are used for formal verification of the design or implementation.

b. Graphical ii
No graphical workproducts are produced.

D. Performance Specification

The specification and measurement of timing constraints are not addressed
but accuracy specification is. Indeed, the accuracy originally specified is
preserved down the hierarchy of machines.

E. Operating Qualities Specification

The security properties desired in the software system to be developed can
be derived from its TLS. Further, the presence or absence of those properties
is checked for in the design or implementation since either or both can be
verified relative to the TLS.

F. Ada compatibility

Ada Feature Supported
Packages X
Tasks X
Generics X
Exception Handling X
Types X

,. Representations ir -

G. Quality Assurance

Consistency and completeness checking are provided by tools which process
the language SPECIAL. In addition, specific properties can be validated
with the aid of a automated theorem prover.

H. Independence I.

Although the HDM methodology is not intrinsically language dependent,
there are tools specifically designed for verifying implementations in PAS-
CAL, MODULA, and Ada (planned for release in 1985).

4-15 K-

•,.. ....... . .................. .. °........... ° . ,

; - -i .° , , ., ' " .: --, . .- -. --- - : --.. ..' i ' = .3 " -.i - -, .i -' --, ; ' i " ' - . " ' - - --: .' " -.-.' ., ' i i -- " -- " .i ---
." ' ." .°. .' . . " '- " .. "." " - -. . -'.. 5 .-. - .'....-. .- '. .. ".-."..".". .. ..-. ., --. ." ... ".-.".". .- .-.".".. .'- ."...... .-. " '



HDM keyB

The security model provided assumes a non-distributed system. If a model
of a distributed system was created, then HDM could be used to verify secu-
rity properties in a distributed environment.

3. Support Aspects

A. Automated Tools

HDM includes a set of tools that check the specifications for syntax errors,
type errors, consistency, and some aspects of completeness.

B. Language

The language SPECIAL (SPECIfication and Assertion Language) is non-
procedural, with a formal syntax and semantics. SPECIAL supports modu-
larity, strong typing, user-defined types, exception conditions, assertions, and
invariants.

a. Requirements Specification - SPECIAL

b. Architectural Design - HSL (Hierarchy Specification Language) is used
to describe structuring of modules into abstract machines and of
machines into systems.

c. Detailed Design - SPECIAL

4. Management Aspects

HDM addresses technical management aspects of a software development by pro-

viding tools for formal validation of design specifications.

5. Usage Aspects

A. Equipment/Facilities Needed for 11DM use:

Tools run under TOPS-20 or TENEX operating system and expect INTER-

LISP.

4-16
-. .. -. . .



HDM key.B

* B. Usabiity

Level Met! odology
Easy to Use I
Moderately Easy to Use Jj
Moderately Difficult to Us X
Difficult to Use U______--

C. Extent of Use N

HDM is a mature technology. It has been used by various organizations
through the auspices of the DoD) Security Center.

L
S. Transferability

A. Availability '

HDM is available by arrangement with the DoD) Security Center. It is
installed on CPU's available through the ARPANET.

B. Training Available

There is a manual on HDM and SPECIAL available from SRI for approxi-
mately $50.

The Mitre Corporation offers public and private seminars on HDM.

C. Training and Experience Required

Must be familiar with concepts in logic and formal mathematics.

______Training/Experience Needed
months USER MANAGER ORGANIZATION.

1-3 ___ ____ _

3-6 X _ _ _

> 6 __ _ _ _X

D. Primary Source of Documentation

SRI International 7
Mitre Corporation in Bedford, Massachuetts

4-17

...........................................
%. . . . . . . . .



AHDM key.B

The reference listed below is an excellent article comparing various formal
methodologies for specification and verification of secure operating systems.
Its bibliography can be used for locating in-depth articles on this topic.

* Also see:

References

* [HDM19811.
"Verifying Security," ACM Computing Survey., vol. 13, no. 3, pp. 270-340,
Cheheyl, M.11. et al, September 1981.

L

4-18

....................................



SADT key.C

4.5 SADT Methodology Evaluation

1. General Aspects

A. Identification

SADT - Structured Analysis and Design Technique

Douglas Ross
Softech, Inc.
460 Totten Pond Road -

Waltham, MA 02254

B. Overview

SADT is a disciplined decomposition approach to modeling complex prob-
lems and systems. The language of SADT (SA) combines a blueprint-like
graphics language with the nouns and verbs which describe the problem
domain of the system to be modeled.

A SADT diagram, known as an actigram, is composed of no more than six
basic blocks. Each basic building block is drawn as a box with four sides
called INPUT, CONTROL, OUTPUT, and MECHANISM. Arrows coming
in and out of the basic box represent flows of data or control. The box
represents a transformation from a before state to an after state. Thus, an
actigram can represent a decomposition of data or activity.

C. Life cycle phases supported:

SADT supports the modeling aspect of requirements analysis very well.
However, as a technique for design it is limited to expressing a decomposi-
tion.

D. Software Categories

1 category

2 Event Control
3 Process Control
4 Procedure Control
5 Navigation
11 Simulation

4-19 .'

. %-



-.. '!

SADT key.C

E. Suitable for systems of size:

SADT is a suitable methodology for requirements analysis of any size system "
since it allows the analyst to deal with a limited scope at any one time and
the language insures a consistent decomposition.

2. Technical Aspects

A. Primary approach

The SADT approach is one strict decomposition by data or function.

B. Supports

Capability
X Traceability - as a management procedure

X Functional hierarchy/decomposition
X Data hierarchy/data abstraction
X Interface definition

Database definition

X Data flow
X Sequential control flow

Concurrency/parallelism

Formal program verification
X Iterative development - by revision of diagram.-

C. Workproducts

The diagrams SADT produces could be used as part of a MIL-STD require-
ments specification.

The workproducts are all diagrams, no text.

D. Performance Specification

Timing and accuracy constraints can be associated with a diagram, although
there is no way to verify that they are consistent with the diagram.

E. Operating Qualities Specification - not addressed.

F. Ada compatibility ",K:

SAIDT could be used for the requirements analysis phase of a software

4-20



SADT key..C

development project whose implementation language would be Ada since
SADT itself is independent of implementation languages. However, SADT
does not directly support or map to specific Ada features.

G. Quality Assurance

Handled as a series of procedures for author/reader cycles, structured walk-
throughs. Correct use of the diagrams forces some consistency.

H. Independent of:

implementation language, hardware architecture, and operating system
architecture.

* 3. Support Aspects

A. Automated Tools

There is a tool (SCG) available from SofTech that will assist in preparation
of the diagrams. TAGS and STRADIS are alternative forms of this metho-
dology. Each has its own tool set which include automated analysis tools.

B. Language

The language is a rigorous graphical language with formal syntax and infor-
mal semantics.

a. Requirements Specification - graphical

b. Architectural Design - graphical

c. Detailed Design - could use a PDL

4. Management Aspects

No procedures for project management are included. However, in support of
technical management, SADT has procedures for validation of the workproducts,
and recommends procedures for checking accuracy and traceability.

4-21

,'2-" .-.. . .. .* N ".*"*",* - ... .. .. . . . . . ..-



SADT key...

5. Usage Aspects

A. Equipment/Facilities Needed for SAD T use:

See specific tool set descriptions for TAGS and STRADIS. Also, a diagram
construction assistant program is available on a CDC Cybernet or Dec PDP-
11 under UNIX version 7.

B. Usability F_

Level Methodology

Easy to Use __.___

Moderately Easy to Use --
Moderately Difficult to Use X
Difficult to Use

C. Extent of Use

It has been used in a variety of settings by many organizations.

6. Transferability

A. Availability

In the public domain.

B. Training Available - from various training firms offering courses in Struc-
tured System Analysis and design.

C. Training and Experience Required

Training/Experience Needed

months USER MANAGER ORGANIZATION
< 1 X__ [1
1-3 ___ Ii
.3-6 X_.._".>6 __ _ __ _ __ _ __ _ _

4-22

. . . . . . .. . . * ..



SADT key.C

D. Primary Source of Documentation:

Softech

References

[SADT1977aJ.
Douglas T. Ross and Kenneth E. Schoman, Jr., "Structured Analysis for
Requirements Definition," IEEE Transactions on Software Engineering, vol.
SE-3, no. 1, pp. 6-15, January 1977.

[SADT1077b].
Douglas T. Ross, "Structured Analysis (SA): A Language for Communicating
Ideas," IEEE Transactions on Software Engineering, vol. SE-3, no. 1, pp.
16-34, January 1977.

44-2



SA/SD key.D i_._.

4.6 Yourdon Real-time Methodology Evaluation

1. General Aspects

A. Identification

SA/SD - Real-time Structured Analysis/Structured Design by Yourdon, Inc.

Yourdon, Inc.
1133 Avenue of the Americas
New York, New York 10036

,(212) 391-2828

B. Overview L__

SA/SD actually refers to two distinct methodologies: real-time and classic.
This description covers the real-time version. The classic version is very
similar, but it does not address real-time issues such as A
concurrency/synchronization or mapping to a distributed hardware architec-
ture.

The methodology blends the three major requirements analysis techniques of
state, flow, and object modeling with the design techniques of decomposition.
Not only does SA/SD provide description of the techniques to use for
requirements and design specification, but it also gives rules of thumb for
applying the techniques in a reasonable and consistent manner both within
and across life cycle phases.

The specific steps in software development as recommended by SA/SD are to
construct a model:

i. of the context or environment of the system,

ii. of the internal behavior of the system,

iii. that shows the processor utilization of the system,

iv. that shows the software architecture utilization, and

v. that shows the coding architecture utilization.

Each model has both a physical and logical organization. The first two steps
are requirements specification and analysis activities; the remaining three are
design activities. Each model is differentiated by the type of behavior which

4-24

-. .: - .-- 7.



- ----- ''-.T ~r * - *. •',,

SA/SD key:D

it describes and its constraining effect on the final implementation. As one
proceeds throug& the steps, the final implementation becomes more con-
strained.

C. Life cycle phases supported:

All three (requirements, architectural and detailed design) phases are sup-
ported.

D. Software Categories

REALTIME

*# category
4 Procedure Control
5 Navigation
8 Message Processing
11 Simulation
15 Decision/planning aids
16 Pattern/image processing

CLASSIC

#L category
2 Event Control
3 Process Control
8 Message Processing
15 Decision and Planning Aids
16 Pattern and Image Processing

E. Suitable for systems of size: Any size.

2. Technical Aspects

A. Primary approach

Requirements specification is primarily done with a flow-oriented approach,
but state transition diagrams also done. The design approach is decomposi-

;D ~~tion. -. :.

" ' ',2"",4 '-

--- 9 T
lb•. 4-25 " ".'

"A-



SA/SD kep.D

B. Supports C.

I Traceability
X Functional hierarchy/decomposition
X Data hierarchy/data abstraction
X Interface definition
X Database definition
X Data flow
X Sequential control flow
X Concurrency/parallelism
XFormal program verification
X Iterative development (data dictionary) L -j

C. Workproducts

They are indirectly relevant to MUL-STD documentation.

a. Textual

Structured specifications, data dictionary, mini-specs, state transition
model, design specification for each code module, database design,
operational constraints, physical constraints.

b. Graphical

Data flow, structure charts for code organization, data structures, finite S:'1
state diagrams, decision tables, and control flow diagrams where state

not independent.

D. Performance Specification

A timing constraint can be associated with a diagram.

E. Operating Qualities Specification

Man/machine interaction is partially addressed through data flow and state
transition diagrams and prototype screens.

A. .

-K 4-26

e ll ..
* ..- V- -.-. ..,,> ..,



SA/SD key.D

F. Ada compatibility

Ada Feature Supported
Packages X
Tasks X
Generics ._..___.
Exception Handling X
Types ____

Representations _____

Incompatibility with database modeling/design and with I/0.

G. Quality Assurance

SA/SD provides a set of rules and procedures to follow to check for coher-
ence, correctness, clarity, and comprehensibility of specifications.

SA/SD recommends guidelines for manual validation via author/user
reviews.

H. Independent of:

implementation language, hardware architecture, and operating system
architecture. However, code organization, processor and software environ-
ment diagrams are drawn with a particular implementation environment in
mind.

3. Support Aspects

A. Automated Tools

Three tool sets provide automated support for the SA/SD methodology:
ARGUS, EXCELERATOR, and PROMOD. See their individual evaluations

for more details.

B. Language

Uses both graphical and textual languages for all specification phases. The
textual language is an informal structured English (a PDL in the case of
detailed design); the graphical languages have formal syntax (symbols are
provided) with informal semantics.

4-27

........ . ...



SA/SD

* 4. Management Aspects

SA/SD supports technical management through procedures for validation of
workproducts and by providing guidelines for application of its techniques.

5. Usage Aspects7
A. Equipment/Facilities Needed for SA/SD use:

See the specific tool set descriptions for ARGUS, EXCELERATOR, and
PROMOD.

B. Usability

Level Methodolog
Easy to Use r
*Moderately Esyto Use X
Moderately Difficult to Use ______

Difficult to Use t______
C. Extent of Use

SA/SD is a mature technology which has been employed by many organiza-

tions for development of a wide variety of software projects.

4-28



7~~~o -777--.

SA/SD key:D

6. Transferability

A. Availability: Commercially available.

B. Training Available

Yourdon, Inc offers public and private seminars and provides consultants.
The public seminars cost approximately $900 per person and are scheduled
nationally. Private seminars, which are structured as a five day course, can
be arranged for up to 24 participants at a cost of roughly $8600.

C. Training and Experience Required

________ Training/Experience eeded
months USER MANAGER ORGANIZATION
< 1 _ _ _ _.._:__ __ __

,-,1-3 X X X .--.

3 -6 _ _,-_ _ _"

D. Primary Source of Documentation

Yourdon, Inc

4-29

.. ., .-. m

o- °.. '.



SCR key.E

-4.7 SCR Methodology Evaluation
- . 4.7 SCR

1. General Aspects

- -. A. Identification

SCR - Software Cost Reduction Project

Naval Research Lab
,Washington, DC 20375

B. Overview

The SCR requirements and design specification methodology is purely tex-
tual. It is based on the principles of information hiding and separation of
concerns. Separation of concerns requires that information be divided into
clearly distinct and relatively independent documents. Information hiding
guides the architectural design of the software and leads to software that is
easy to change.

The basic approach is data abstraction. Data items and the functions
needed to create, store, retrieve, or manipulate them are identified. Event
lists are used to document how the abstractions change relative to changing
conditions as the software executes. This conditions can be nothing more
complicated than passage of time.

The methodology includes procedural guidelines and suggested documenta-
tion formats that help keep the specifications complete and consistent.

C. Life cycle phases supported:

All specification phases supported.

-.

-. .,

",':-" 4-30 -

-. , - ' " "" • " . - " .: ., • , ,, " ., ", . . . . .. " .

.#e *. .. ., . . ..- " ., - ,* , .* . ~-- . -* .'. -.... .. . .. , ,



*SCR key:E

D. Software Categorie.

.L category
2 Event Control
3 Process Control
4 Procedure Control
5 Navigation
6 Flight Dynamics
7 Orbital Dynamics
8 Message Processing
10 Sensor/signal Processing
11 Simulation
13 Data acquisition
15 1Decision/planning aids
16 1Pattern/image processing

E. Suitable for syst ems of size:

Any, but large systems would benefit from automated documentation control

tools.

2. Technical Aspects

A. Primary approach

State-oriented for requirements since events and conditions are specified.

Design approach is encapsulation by data abstraction.

B. Supports

4-31



SCR key.E l l

Capability

Traceability
X Functional hierarchy/decomposition
X Data hierarchy/data abstraction
X Interface definition

Database definition
Data flow
Sequential control flow

X Concurrency/parallelism
Formal program verification

X Iterative development

C. Workproducts

Satisfies the intent though not always the form of MIL-STD documentation.

a. Textual

Requirements document, module decomposition document, hierarchy
subset (uses relationships between modules), process structure docu-
ment, resource allocation document, and module interfaces.

b. Graphical

Has suggested formats for data item descriptions, and templates for
value descriptions.

D. Performance Specification

Although the method is primarily textual, specification of timing constraints
is expected. Accuracy is addressed in the formats for data item and value
descriptions. " 'l

E. Operating Qualities Specification --.
Possible, since specifications are pure text.

4-32



SCR kep.E

F. Ada compatibility

Ada Feature Supported

Package X
Tasks X

Generics X L
Exception Handling X
Types X
Representations X J

G. Quality Assurance

The methodology suggests the use of a data dictionary for data item descrip-
tions and the use of text macro expansion to keep definitions of functions
and data items consistent across documents. Condition and event tables can
be manually analyzed to check for consistency and completeness. Validation
can be accomplished by manual review of the documents.

H. Independent of:

Hardware architecture, operating system architecture, and implementation
language. An implementation language which enforces data abstraction is
preferable (Ada does to some extent).

3. Support Aspects

A. Automated Tools

None specific to SCR, but document preparation and control tools are useful.

B. Language

Rigorous English is used for all specification phases.

C. Management Aspects

Addresses project management issues via manual procedures for document
control. Technical (quality) management is addressed as analysis of event
and condition tables.

4. Usage Aspects

4-33

N. o -.



SCR kep.E

A. Equipment/ Facilities Needed for SCR use:

Text editor on any CPU.

B. Usability

Level Methodology
Easy to Use x
Moderately Easy to Use _____

Moderately Difficult to Use ______

Difficult to Use f
C. Extent of UseL

The methodology has been used outside the Naval Research Lab by several
organiZations (see reference by Hester below) on several projects.

5. Transferability

A. Availability

In public domain in the form of technical reports from the Naval Research

Lab.

B. Training Available

All documentation is in the public domain.

C. Training and Experience Required

________ Training/Experience Needed
months USER MANAGER ORGANIZATION
<1 X X X
1-3__ _ __ _ _ _ __ _ _ _ _ _

3-6 ___ _____ ______ _

D. Primary Source of Documentation

Naval Research Lab
Washington, DC 20375

4-h



-2.°

SCR key:E

Also see:

References

[Britton 19811.
Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas, "A Pro-
cedure for Designing Abstract Interfaces for Device Interface Modules,"
Proceedings of 5th International Conference on Software Engineering, pp.
195-204, March 1081.

[Chmura19821.
Louis J. Chmura and David M. Weiss, "The A-7E Software Requirements
Document: Three Years of Change Data," Proceedings from AGARD
Conference CP-330, September 1982.

[Heninger80].
Kathryn L. Heninger, "Specifying Software Requirements for Complex Sys-
tems: New Techniques and Their Application," IEEE Transactions on
Software Engineering, vol. SE-6, no. 1, pp. 2-13, January 1980.

[llesterl0811.
S.D. Hester, D.L. Parnas, and D.F. Utter, "Using Documentation as a
Software Design Medium," The Bell System Technical Journal, pp. 1941-
1977, October 1981.

[Parnas 19721. -

David L. Parnas, "On the Criteria to be Used in Decomposing Systems into
Modules," Communications of the ACM, pp. 1053-1058, December 1972.

4-35



SREM key.F

4.8 SREM Methodology EvaluationA

1. General Aspects

A. Identification

SREM - Software Requirements Engineering Methodology

J. Mack Alford
TRW, Huntsville Laboratory ,
213 Wynn Drive
Huntsville, AL 35808
(205) 837-2,100

13. Ouerrieu-

Sl|"M is based on a graph model of software requirements. The basic con-
cpt is that design-free functional software requirements should specify the
reqlired processing in terms of all possible responses (and the conditions for
each respoinse) to each input message across each interface. A message may
contain input data or represent stimuli generated from an external event.

That is, the methodology is based on a stimulus/response approach as

opposed to a purely hierarchical decomposition approach. The required
actions of the software are expressible in terms of R_NETS (requirements
networks) of processing steps. Each processing step is defined in terms of

input (ata, output da. a, and the associated data transformation. The input
int,,rfaces (the syst em stimuli) are defined and the RNETS trace the inputs
through the v arious functional transformations to their associated system
out puts (r(-,p(onsvs).

.( '. life cycle pha.se.s s upported:

'1.\1 ,hirectlv llj),orts the requirements analysis )hase; the other two
phi:>ss : rn ,upp )rtfI hy I)('I). l)( 1)5 is the extension of SREI? l to design

,'.

r, -



"Yww~ L .q I e r Lq %7 1%7W TX'. ' 7. VCR 7~ K*.~ 7

SREM key.,F

D. Software Categories

Scategory
6 Fligbt Dynamics

7 Orbital Dynamics
10 Sensor/signal Processing

13 Data acquisition

E. Suitable for systems of size:

Medium to large size.

2. Technical Aspects

A. Primary approach

State-oriented [alternatively referred to as finite state machine or stimulus-
response descriptions].

B. Supports

Capability

X Trace-ability
X Functional hierarchy/decomposition

X Data hierarchy/data abstraction

X Interface definition
X Database definition

X Data flow
X Sequential control flow
X Conc urrency/parallelism

X Formal program verification

X Iterative development

C. U'orkproducts

They are indirectly relevant to MlILSTD documentation. The requirements
and quality assurance sections of a specification are addressed by the RSL

listing and the completeness and consistency tests REVS provides.

4-37 -



.~~~. ..

SREM key:F

a. Textual

Documentatkin from queries to requirements database maintained by .V
tool set REVS. Requirements are maintained as RSL statement list-
ings.

b. Graphical

R-NET diagrams produced by tool set REVS, requires a Versetek
printer.

D. Performance Specification

Both accuracy and timing constraints can be formally specified.

E. Operating Qualities Specification

Can be specified as UNSTRUCTUREDREQUIREMENTS. In some cases,
RSL has been extended to cover specifying some of these qualities.O

F. Ada compatibility

Ada Feature Supported

Packages X
Tasks X
Generics X
Exception Handling X
Types X
Represen tations

G. Quality Assurance

Static analyses for consistency and completeness can be performed with the
tool set REVS. Validation can be performed as a manual procedure of peer
review, or as a dynamic simulation through REVS.

I1. Independent of

implementation language, hardware architecture, and operating system
architecture.

3. Support Aspecta

4-38

|-. ..- -... , ,, %,., .- ,-,--,,,-,:_ .-.- .. . ,, -: , .. . .. .. . . .-.. . ,. . . .. . . - ..-. . - .- . -. . .- - .,



SREM key.:F

A. Automated Tools

The set of automated tools is known as REVS. The tools aid in preparation
of documentation of requirements, perform static consistency and complete-
ness analyses of data flow and the database maintained by REVS, and per-
form dynamic analyses.

B. Language

Requirements Specification is done with RSL. RSL (Requirements
Specification Language) has formal syntax with informal semantics. RSL is
also extensible to allow the user to extend the language to meet the require-
ments of specific projects.

Architectural and detailed design can be done with the languages DCDS pro-
vides.

4. Management Aspects

SREM supports project management since it is possible to derive schedule infor-
mation and management control information from the centralized data base
(ASSM for Abstract System Semantic Model) REVS provides.

Technical management is supported through quality assurance tools REVS pro-
vides.

5. Usage Aspects V..

A. Equipment/Facilities Needed for REVS use:

CDC 7600 or Cyber 74/174/175 or VAX 11/780/VMS
graphics consoles
Pascal/Fortran compilers
plotters

B. Usability

Level Methodolog"

Eay to Use _ _ _

Moderately Easy to Use _'.-___"..-

Moderately Difficult to Use X

Difficult to Use

4-39"

- ,., .-...-.- ',.',., :'., .... /.~ ~ ~~.. ....... ........... 7,:............ .-.. .'-. -.. .. ,,.: ,...,.,



SREM key-F

C. Extent of Use

SREM is mature, having been used on many projects by many organizations.

6.Transferability

A.. Availability___

In public domain.

B. Training Available

A description of the methodology (VOL 1) and a user's guide (VOL 2) are
available as public documentation.

TRW will supply consultants on SREM (for a fee, of course). They also offer
seminars on SREM.

C. Training and Experience Required

_______ Train ing/Experience Needed

months USER MANAGER ORGANIZATION

1 -3 __ _ _ _X

3- 6 __ _ __ _ _ _ __ _ _ _ _ _

D. Primary Source of Documentation

B~allistic Missile Defense Advanced Technical Center
Hluntsville, AL

IRE User's Group

4-40



SREM key.:F

[Bell 19761.
Thomas E. Bell and David C. Bixler, A Flow-oriented Requirements St ate-
ment Language, TRW, April 1076.

[RzepkaI0821.
William E. Rzepka, Using SREM to Specify Command and Control Software
Requirements, RADC-TR-82-319, Rome Air Development Center, Griffiss
AirForceBase, NY, 1082.

iRzepkalO83].
*William E. Rzepka, "RADC SREM Evaluation Program - A Status

Report," ACM Sigsoft Software Engineering Notes, vol. 8, no. 1, pp. 20-22,
January 1083.

[Stone 19831.
* .A. Stone, D. Ilartscbuh, and B. Castor, SREM Evaluation, Rome Air

Development Center, February 1084.

4-41



' .: . -, I .-,, - .* ,. .. , -, : . ,:- . " .- *- " .
'  

. . - . - ----- .- ,:-- -= "----.J - 7. r ..

VDM key.G

4.9 VDM Methodology Evaluation

1. General Aspects

A. Identification

VDM - Vienna Development Method

Developed at the IBM Vienna Labs by Cliff Jones et al.
Vienna, Austria

Supported by Dines BjornerDepartment of Computer Science...

Bldgs 343-344
Technical University of Denmark
DK--800Lyngby, Denmark

B. Overview

Define representation abstractions (syntactic domains); then create a series of
refinements with justification from one refinement to the next. Based on set
theory. The parts of a VDM specification are:

I state and type definitions - define the data objects that are to be
employed within the specification and their logical types (one of sets,
lists, mappings, and records);

e invariants - predicates on the state which assert that specific relation- %ships hold between the values of the data objects in that state; and,

* operations and associated functions- mathematical formalisms that
define key activities on the data objects, functions can not change the "-
state of an object, operations can.

C. Life cycle phases supported. All. V

..

4-42 .

41,0



VDMkc.

D. Software Cate gories

iL category
1 Arithmetic Based

8 Message Processing
9 Diagnostic S/W

12 Database Management
14 Data presentation

15 Decision and Planning Aids
16 Pattern and image processing
17 Computer System Software
18 Software Development Tools

E. Suitable for systems of size:

Medium and Large, but experience in the methodology could best be gained

by developing small systems first.

2. Technical Aspects

A. Primary approach

State-oriented for requirements; encapsulation for design.

B. Supports ____________________

Capability

I Traceability (mapping of GMB to SLI)
X Functional hierarchy/decomposition
IX Data hierarchy/data abstraction
X Interface definition
X Database definition

Data flow
Sequential control flow

* oncurrency/parallelism - doesn 't prohibit

X Formal program verification
X Iterative development

C. Workproducts

Does not prodluce MIl-,STrD document at ion.

4-13

-' -Z-. - K



VDM ke..G

a. Textual

Produces a series of more detailed formal specifications written in
META-IV.

b. Graphical None.

D. Performance Specification

Can specify accuracy constraints through representations for types.

E. Operating Qualities Specification Not addressed.

F. Ada compatibility

Ada Feature Supported

Packages X
Tasks X r
Generics X

Exception Handling C
Types X

1 Representations _

G. Quality Assurance

Verification is a manual procedure.

11. Independent of

implementation language, hardware architecture, and operating system
architecture.

3. Support Aspects

A. Automated Tools

VDM has no set of automated tools.

B. Language .

The language for all three specification phases is designated META-IV. It is
based on set theory and is nonprocedural, with a formal syntax and seman-
tics.

4-44

L:,:J,



VDM key.G

.. 4. Management Aspects

V'DM support technical management through its techniques for validation of the
design.

5. Usage Aspects

A. Equipment/Facilities Needed for VDM use:

VDM has no automated tools, thus none needed.

B. Usability
L__

A developer needs some knowledge of logic and the formalisms of finite
mathematics.

Level Methodology

Easy to Use JJ____
Moderately Easy to Use _•

Moderately Difficult to Use X..,y

Difficult to Use ,',•

C. Extent of Use

VD\M is mature, and has been applied to large projects by various organiza-
tions. DDC (Dansk Datamatik Center) used VDM to develop a validated
Ada compiler.

6. Transferability

A. Av ailabilty

In public domain.

1B. Training Available

Through seminars and consultants:
Dines Bjorner and Dansk Datamatik Center '

Cliff Jones of Manchester University

As of December 1984, Dines Bjorner charges $2000/wk plus expenses for a
seminar on VDM1.

• ~~4-45 ".,.,

p. t ,' ' -,., -- -' ' ' ." - -., ." ", •_ .. -" -' - .". , . . . " . . .. L



VDM key.CG

C. Training and Experience Required

_______Training/ Expe rie nc e Needed

4months 
USER MANAGER 

ORGANIZATION

-6 X ____ _____

D. Primary Source of Documentation

Also see:

[Bjorner10781.
The Vienna Development Method: The Meta-Language, Lecture Notes in
Computer Science, Springer-Verlag, 1078.

[[3jorner 19811.
Dines Bjorner, The VDM Principles of Software Specification &1 Program
Design, Lecture Notes in Computer Science, Formalization of Programming
Concepts, pp. 45-7-..

[ r .Clemmensen 18J andl Ole N. Oest, Format Specification and Develop-

Ment of an Ada Compiler - A 17DM Case Study, IEEE, 1084.

[Jones I9801.
(l111T 13. .Jones, Software Development: A Rigorous Approach, Prentice/Hall
International, 1980.

[shaw 198 11.
11.C. Shaw, P~.N. H~udson, and N.W. Davis, "Introduction of a Formal Tech-
nique into a Software D~evelopment Environment," ACMV Softwuare

* Engineering Notes, vol. 9, no. 2, pp. 54-70, April 198.

L

1-7Y



-7~~ ,77 "-F

_ - -

DCDS key.H

4.10 DCDS Methodology Evaluation

*, 1. General Aspects

A. Identification

DCDS - Software Requirements Engineering Methodology [

J. Mack Alford
TRW, Huntsville Laboratory
213 Wynn Drive
Huntsville, AL 35808
(205) 837-2400

B. Overview

DCDS is the extension of SREM to the design of distributed data processing
systems with traceability to requirements. DCDS can be considered a two-
part methodology:

, Programming-in-the-large - a data processor architecture is selected
and the required processing is mapped onto it. This part, called Distri-
buted Design, consists of allocating processing to a processor, allocating
data to a processor, defining scheduling, and task design.

• Programming-in-the-small - algorithms are selected or constructed.
This part is known as module design.

C. Life cycle phases supported:

SREM supports requirements analysis; DCDS supports architectural and
detailed design.

D. Software Categories L

.. ~# category •"-'''

6 Flight Dynamics
Orbital Dynamics

10 Sensor/signal Processing
" 1 1 ~Simulation " ."

13 Data acquisition . -.

A7-1

= --'v ..- .. .

,.. . . . . . . . . . .

o • , -. *

. . . . . - , .- . . . - . - . . . . -: - . . - . ..- . . - . . .. - . . .



DCDS key:H

E. Suitable for systems of size: medium and large.

2. Technical Aspects

A. Primary approach

The design approach is basically encapsulation.

B. Supports

Capability

X Traceability
Functional hierarchy/decomposition

X Data hierarchy/data abstraction
X Interface definition
X Database definition
X Data flow I.

Sequential control flow
X Concurrency/parallelism - includ-

ing synchronization
Formal program verification

X Iterative development

C. Workproducts

The specifications are maintained in the various languages used in DCDS. In
that form, they would not be usable as MIL-STD documentation. However,
it is possible that the tools generate usable documentation such as structure
charts or tests plans from these statements.

V. Performance Specification

The constraints specified with SREM are taken into consideration. Also, the
dynamic analysis tools can test whether the design meets those constraints.

L. Operating Qualities Specification

F"mit-tolerant behavior is addressed in the detailed design phase.

.1---8

"'. . . . . ..

• .. -. , - . . - . .- . , .. . - . . .,..... . .. . . ° .... - 1. _ , - -, .'. .. .



DCDS key:H

F. Ada compatibility _-_._-__"

G. Quaity Asuranc
L-- -

Ada Feature Supportedn . f,
i, •Packages X

cesoc p Tasks X Vlai i.o
• Generics X_ =

Exception Handling X

deTypes X

il ni lgRepresentations X

G. Quality Assurance

The automated tools check for consistency and completeness. In fact, one
checks for completeness of the processor allocation. Validation is done
dynamically and can include testing whether the design satisfies perfor-
mance constraints.

rh. Independent of ihDe

implementation language, hsmarre architecture, and operating system
• architecture.. .

h 3. Support Aspects -

A. Automated Tools -'.

The tool set REVS from SREM has been extended for use with MDL,.: --
"- ~(Module Design Language). 5

13. Language" .

Architectural design is done with a language DDL (Distributed Design." -
"",[] ~Language) whose syntax is similar to RSL (SREM's language). Detailed L .:

I(leign is done with a language MDL (Module Design Language) whose syn- .i
tax is again similar to RSL.

I)('V)S also provides a language called TSL (Test Specification Language),
% lhi ch links requirements, design, and tests. TSL is used to define test plans

and verify that those plans exhibit -ompleteness of coverage. k

ii

4-4'



DCDS key:H

* 4. Management Aspects

a. Project management

Miodules and tasks are grouped into administrative units called units of code.
Thus, they can be tracked by the central database, ASSM,.

6. Technical management

In particular by test plan development.

5. Usage Aspects

A. Equipment/Facilities Needed for REVS use:

U-nknown, probably same as REVS for SREM.

B. U.sability

DCDS is still in the research phase, so usability is yet to be determined.

6. Transferability

A. Availability

D('DS is still under development, release planned for 1985.

13. Training Required

Can not be determined at this time (prior to release).

C. Primnary Source of Documentation

Ballist Wn \fissile Defense Advanced Technical Center
Hluntsville, AL,

* Mack Alrord. Requirernents For Distributed Data Processing Design, IEEE,

\Iack Alfn)rd, .- JS?F.\ At the Ag', or Eight: The Distributed Computing
1)i-itgn '-v.~t em. l)rart. lhernher 198-1.

* .1-50



'rr: - - --. "-.. . . . . . ... ~

JSD key:.J

4.11 JSD Methodology Evaluation

1. General Aspects

A. Identification

JSD - Jackson System Development -.

Michael Jackson Systems Limited
17 Conduit Street
London, England WIROTD
Tel: 44-1-409-6655

B. Overview

JSD divides the process of software development into three main phases:

1. Modeling - an explicit examination of the external world with which
the system will be concerned resulting in a diagrammatic description
that clearly isolates and defines those aspects of the external world that
are of interest. The model serves as an aid to understanding the sub-
ject matter of the system and provides the core for the formal
specification of the system's functions.

2. Function - concerns the outputs of the system, what they should be
and how they should be generated, resulting in diagrammatic descrip-
tions attached to the functions in the previously defined model. The
completed specification consists of a system specification diagram
which defines the system as a set of logical processes communicating by
data transfer and a set of structure diagrams which define the internal
logic of each process.

3. Iml)lementation - the system specification is converted into a form suit-
able for running on the chosen hardware by applying standard JSD
proce(hires (called TRANSFORMATIONS) to package and realize the
logical l)rocesses previously defined.

C. Life cycle phases supported: All.

• -5 1 . *. *

*~ . ,. S *~ * . . - .



-7:, JSD key:I

D. Software Categories

- category

I Arithmetic-based .
8 Message processing
9 Diagnostic Software

12 Database Management
14 Data presentation
15 Decision and planning aids

16 Pattern and image processing
17 Computer System Software
18 Software Development tools -1

E. Suitable for systems of size. All.

2. Technical Aspects
o--1

.4. Primary approach

Object-oriented for requirements with a process being an encapsulation of
local state that can communicate with other processes; the design

B. Supports

aprac snapuato.Capab ility .

X Traceability - since structure charts
associated with model
Functional hierarchy/decomposition

X Data hierarchy/data abstraction
X Interface definition

X Database definition
X Data flow

X Sequential control flow
X Concurrency/parallelism since

each process can be implemented on
a separate processor

Formal program verification
X Iterative development

4-52

.. ............. . .... .

L'', ... ..... '..'..'.'. . .". .. Q .•'.'.-.." .. . . -- , .'.... .. "- . ." - . - . . . .- '. ."-, . .- .



JSD kei:I

C. Workproducts

Data flow diagrams can be used for MIL-STD documentation.

a. Textual

Requirements are documented as a system specification that includes a
model of the system to be developed. Structure texts (in the form of
attribute grammars) detail the logic to be used within a process.

b. Graphical

Entity and Action lists
Tree-structured entity diagrams
data flow diagrams
database diagrams
system specification diagram (the MODEL)
complete system specification diagram with structure diagrams that
describe functions.

D. Performance Specification Not addressed.

E. Operating Qualities Specification Not addressed.

F Ada compatibility

Ada Feature Supported

Packages X
Tasks "._ _

% Generics .

Exception Handling _,_._,

Types ._"____

Rep resen tat ions ____

(I. Quality Assurance

Manual validation via structured walkthroughs and author/reader cycles.

HI. Independent of

Transformations do not assume a specific implementation language, although
the methodology has been primarily used on Cobol development projects.
Also independent of hardware and operating system architecture.

4-5I
4-53 :::



JSD kep:I

3. Support Aspects

A. Automated Tools None.

B. Language

The languages used for all three phases are graphical. The transition from
the graphics of detailed design to actual code is straightforward, since the
graphics symbols map easily to implementation language contro! structures
such as do.. .while.

4. Management Aspects

Technical management addressed through manual validation of workproducts. -

5. Usage Aspects

A. Usability ____-.
Level Methodology

Easy to Use

Moderately Easy to Use X
Moderately Difficult to Use "
Difficult to Use f_____

B. Extent of Use

JSD is a mature methodology that has seen extensive use in England.

6. Transferability

A. Availability

Commercially available.

B. Training Available

There is both public and proprietary documentation. Seminars and consul-
tants are available.

Advanced Software Methods, Inc.
17021 Sioux Lane
Gaithersburg, MD 20878
(301) 948-1989
will provide consultancy and seminars. The course is five days and costs

4-54

• . . .,.., .. ,..... .. ••. . ,. • ,



JSD key:I

approximately $6500 plus instructor's expenses.

A course in JSD has been offered through
Rocky Mountain Institute of Software Engineering
Aspen, Colorado.

C. Training Required

________ Training /Experience Needed

Mon ths USER MANAGER ORGANIZATION
<1 X _ _ _ _

1-3__

3-6 X
> 6 _ _

D. Primary Source of Document ation

Michael Jackson Systems Limited
Also see:

References

[Jacksonl9831.
Mich ael Jackson, System Development, Prentice/Hall International, 1983.

4-55



PAISLey key:J

4.12 PAISLey Methodology Evaluation

1. General Aspects

A. Identification

PAISLey - Process-oriented, Applicative, Interpretable Specification
Language

Pamela Zave
AT&T Bell Laboratories
Murray Hill, NJ 07974

B. Overview

PAISLey was developed explicitly for requirements specification of embedded
real-time systems and takes an "operational" approach to requirements -

specification. That is, PAISLey allows the specifier to construct an execut-
able model of the software as it would function in its environment.

The primary unit of specification is the process - a simple, abstract represen- - -

tation of autonomous digital computation. Each process is specified by sup-
plying a "stat" space" (set of all possible states) and a "successor function"
on that state space which defines the successor state for each state. A pro-
cess is cyclic and gots through an infinite sequence of states (a distinguished
'laltvd" state can be defined) asynchronously with other processes.

" ,cauise re(luirem ents are executable (by simulation), it is possible to attach
and test timing constraints to processes. The constraints can be defined as
niaxinhiun, mniniuimin, mean, or constant evaluation time for the process.

Since liSLey is an applicative language, a process can only access informa-
tion in the state of another process by an explicit request. These requests
are formulated as exchange functions and allow every form of synchroniza-
tion to be defined.

('. Life cycle phaes .snpported:

'-lSl,,,y mly sulpports requirements specification. The design phases could
be done with a methodology which also uses the concept of abstract
Iprove'sses (IS I) for one,).

1-56



PAISLey key:J

D. Software Categories

Scategory
2 Event Control
3 Process Control
4 Procedure Control
5 Navigation

'6 Flight Dynamics
7 Orbital Dynamics
10 Sensor and signal processing
11 Simulation

13 Data acquisition .

E. Suitable for systems of size: Any.

2. Technical Aspects

A. Primary approach

Object-oriented for requirements with a process being an encapsulation of
local state that can communicate with other processes; has no specific design
approach.

B. Supports -. -

Capability
Traceability

Functional hierarchy/decomposition
Data hierarchy/data abstraction

X Interface definition

Database definition
X Data flow
X Sequential control flow

X Concurrency/parallelism since
each process can be implemented on
a separate processor
Formal program verification

X Iterative development

(. lWorkproducts

-4.-57

,1-57 "'"



PAISLey key.J

The only workproduct is the model of the system in the PAISLey language.

As such, the model is not relevant to MIL-STD documentation.

D. Performance Specification

Both timing and accuracy constraints can be specified and tested.

E. Operating Qualities Specification

Man/machine interaction can be prototyped. The fault-tolerance and secu-

rity properties of the specification can be tested since the model is fully exe-
cutable as a simulation.

F. Ada compatibility

Ada Feature Supported

Packages X

Tasks X
Generics

Exception Handling X
Types _"-"

Representations X

;. Quality Assurance

Some consistency and completeness properties are checked by the PAISLey
language interpreter. Validation proceeds as a series of executions (simula-
tions).

11. Independent of:

Implementation Language, hardware architecture, and operating system

architecture.

3. Support Aspects

A. Automated Tools

PAISLey incorporates a language checker and a simulation facility, which

interprets the PAISLey code.

. Language

".'". .l~-58 '

-F°•.



PAISLey key.:J

The PAISLey language is based on a class of programming languages desig-
nated applicative. Execution of a PAISLey program proceeds as applications
or evaluations of functions rather than a series of subroutine calls. That is,
PAISLey is more like LISP than like FORTRAN. One advantage of applica-
tive languages is the the ease of mapping programs to distributed imple-
mentations.

4. Management Aspects

PAISLey supports technical (quality) management of the requirements analysis
phase of a project through its simulation facility which results in a computerized
validation of requirements.

5. Usage Aspects

A. Automated Tools

The primary tool is the PAISLey interpreter, others include a cross-
referencer, a type checker, and a consistency checker. PAISLey assumes the
processor is running UNIX. It also requires a text editor and a file system.

B. Usability

PAISLey is still in the research and development, so its usability is not esta-
blished.

C. Extent of Use

PAISLey is still evolving and has only been used under the close supervision

of its creator, Pamela Zave.

6. Transferability

A. Availability

Available on a case by case basis from Pamela Zave.

B. Training/Experience Required

Not established yet.

C. Primary Source of Documentation

Pamela Zave

4-50

- •. ".



PAISLey key:J

- Also see:

* References

IZavel882].
Pamela Zave, "An Operational Approach to Requirements Specification for 4
Embedded Systems," IEEE Transactions on Software Engineering, vol. SE-
8, no. 3, May 1982.

* jZaveli083].
Pamela Zave, "Operational Specification Languages," Proceedings ACM --

'83, October 1083.

[ZaveIO8ij1.
Pamela Zave, "An Overview of the PAISLey Project-1084," ACM Sigsoft
Softwuare Engineering Notes, pp. 12-19, July 1084.

4-60



SARA key.K

4.13 SARA Methodology Evaluation

1. General Aspects

A. Identification

SARA - System ARchitect's Apprentice

Department of Computer Science
University of California at Los Angeles
Los Angeles, CA 90024 L

B. Overview

SARA is a set of modeling and evaluation tools that support a
requirements-driven design methodology for concurrent systems. SARA -

encourages partition of a design or analysis universe into a system and its
environment, with explicit models of their behaviors. The system includes
tools to model behaviors (GMB), to model structures(SLI), and to model the
structure of code-modules (MID).

GMB produces a graphics-based model of behavior in three domains: flow of
control, flow of data, and interpretatk i. The model described in GMB may
be interactively simulated and the control flow information can be formally
analyzed for inconsistency, completeness, liveness (freedom from deadlock),
and termination.

SII dscribes hierarchically related structures. A designer can specify a
nested space of identifiers which partition a design universe and encapsulate
behavioral models. ?A module encapsulates part of a behavioral model; a
socket encapsulates behavior related to the interface between a module and
its environmnt; an interconnection connects modules at their sockets and
represents potential flow of data or control.

(\IH models are mapped to SLI structures, providing the connection
bt ween the behavior of objects in the actual environment and objects that
will be instm:ntiated during execution of the software system.

C. Life cyrle phases supported: All.

' '..'. i

. -- .- . . -~~~~', . . . . . . . . . . . . . .. . . . . . . . . . . . .



SARA ke y:K

D. Software Categories

6 Flight Dynamics
7 Orbital Dynamics

10 Sensor/signal Procesn
13 Data acquisition

E, Suitable for systems of size. Any.

2. Technical Aspects

A. Primary approach

Flow-oriented for requirements; decomposition for design.

B. Supp(,rts

- . Capability

X Traceability (mapping of GMB to

X Functional hierarchy/decomposition
X Data hierarchy/data abstraction
X Interface definition

Database definition

X Data flow
X Sequential control flow

X Conc urrency/parallelism
* Formial program verification (not

X Iterative development

C1. Workproducts

Since the reqjuiremenlts document is produced manuially, it can he \11L-STD.

A\da specifica ionl parts can he used as the formal de(scription of mo(IukVs and



. . . . .-.

SARA key:K

a. Textual

Requirements document, reports from analyses, QA requirements docu-
ment, and evaluation transcripts.

b. Graphical

Design models:
structural (SLI)
behavioral (GMB) with control and data flow
module interface (MID)

D. Performance Specification

Timing constraints can be associated with a socket.

E. Operating Qualities Specification None.

F. Ada compatibility

Ada Feature Supported

Packages X
Tasks X
Generics X
Exception Handling X
Types X
Representations ---.

G. Quality Assurance

Consistency and completeness of behavior models and module interfaces can
be statically checked. Validation can be performed through a simulation.

I. Independent of

Although SARA was specifically designed for specification of concurrent sys-
tems, the specifications it produces are independent of hardware architecture,
operating systern architecture, and implementation language.

1-63



SARA key:K

3. Support Aspects

A. Automated Tools

SARA includes a set of automated tools. There are language processors for

GMIB, SLI, and PLIP (a preprocessor for PL/1). The GMB models can be
analyzed in the domain of control flow to identify deadlock states and criti-
cal transitions that lead to deadlock. 5.4:

B. Language

a. Requirements Specification --A
GMB can model behavior of both the software system and its environ-
ment.

b. Architectural Design

SLI models the necessary structures to instantiate the desired behavior
captured in the GMB models. The MID models map from the SLI
structures to code modules. Because the structure of code modules is
specified independently of the 'idealized' structure of the problem,
analysis of various architectures for the code modules is encouraged.

c. Detailed Design

Can be done with Ada specification parts, or with PLIP, a PL/I
preprocessor.

* 4. Management Aspects

S.\lA's support for technical management is a quality assurance requirements
d curi ent.

WI
--,.

21



SARA key.-K

5. Usage Aspects

A. Equipment/Facilities Needed for SARA use:

Available for use under Berkeley Unix on a VAX or on MIT's MULTICS on
ARPANET.

B. Usability

Level Methodolog
Easy to Use______

Moderately Easy to Use ______

Moderately Difficult to Use X
Difficult to Use _______

C. Extent of Use

* SARA has only been used at UCLA on student projects.

6. Transferability

*A .. Availability

In public domain.

B. Training and Experience Required

_______Train ing/Experience Needed
months JUSER JMANAG ER OGNZT N
<1OGIZTO
I_- _ X X

C. Primary Source of Documentation

l~epartment or Computer Science
UCLA

4-65



F~ 0. W.

SARA key:K

Also see:

References

[Razouk1980].
Rami R. Razouk and Gerald Estrin, "Modeling and Verification of Com-
munication Protocols in SARA: the X.21 Interface," IEEE Transactions on ....
Computers, vol. C-29, no. 12, pp. 1038-1052, December 1980.

[Penedo8l..
Maria Heloisa Penedo, Daniel M. Berry, and Gerald Estrin, "An Algorithm
to Support Code-Skeleton Generation for Concuri2nt Systems," Proceed-
ings 5th International Conference on Software Engineering, pp. 125-135,
March 1081.

• ,.

- .o..•

I : .- -6



USE keyl

4.14 USE Methodology Evaluation

1. General Aspects

A. Identification

USE - User Software Engineering Methodology

Anthony 1. Wasserman
Medical Information Science
University of California, San Francisco
San Francisco, CA 04143

B. Overview

USE is a methodology to support the development of specifications, designs,
and implementations for interactive information systems. The automated
tools are TDI (transition diagram interpreter), Troll (interface to a relational
database system), RAPID (rapid prototypes of interactive dialogue), PLAIN
(Programming LAnguage for INteraction), and the USE control system
(management support),

The steps for requirements analysis are:

1. Identify system objectives and constraints, including conflicts of
interest among user groups.

2. Model the existing system using a requirements analysis method (Struc-
ture(l Systems Analysis for instance).

3. Construct a conceptual model of the database, using the Semantic
lierarchy model of Smith and Smith.

.1. Produce a system dictionary containing the names of all operations, all
data items, and all data flows.

5. lHeview the analysis results within the development group and with the
users and CIst()mers.

The formal requirements specification methodology is called BASIS
(Behavioral Approach to the Specification of Information Systems). Each

B..\SIS specification of a data abstraction includes three parts: the abstract,
-.- imIage (representation), the invariant (behavioral characteristics that are

always true), and input and output constraints (pre- and post-con(ditions) for

1-67



USE kep:L

each operation defined on the abstraction. An informal narrative can be -
associated with each specification of an operation for an abstraction.

Architectural design constructs a structure chart of the overall design, fol-
lowing the general structure already outlined during the requirements phase.
Detailed design is done via a program design language similar to
Caine/Gordon. Both design phases are reviewed with walkthroughs.

C. Life cycle phases supported: All.

D. Software Categories

category,

-1 Arithmetic-based
___ Diagnostic Software
12 Database Management
14 Data presentation
17 Computer System Software_18 Software Development tools

E. Suitable for systems of size: Any.

2. Technical Aspects

A. Primary approach

Primarily object (both process and data) modeling for requirements analysis
(data flow can be done), with functional decomposition (where the functions
were previously identified in the requirements phase) for design.

4-68

--'. ill .'



USE key.L

B. Supports

Traceability -i -

,57 , cFunctional hierarchy/decomposition . .

X Data hierarchy/[data abstraction

X Interface definition

X Database definition
X Data flow
X Sequential control flow

Concurrency/parallelism (doesn't
rohibit_

X Formal program verification
X Iterative development

C. Workproducts

The structure charts (of modularization) could be used for preparation of
MIL-STD documentation.

a. Textual

Formal specifications of data abstractions and pdl definitions of
modules.

b. Graphical

Entity-relationship diagrams, semantic hierarchy models, augmented
transition diagrams for interactive dialogue, and structure charts for
rmodularization.

D. Performance Specification None.

E. Operating Qualities Specification

Spc('ification of the Man/machine interaction is directly addressed.

F. Ada compatibility 1 ,J

4- 6-

h..V-



USE key:L

Ada Feature Supported

Packages X
Tasks X
Generics

Exception Handling X

Types 
-

Representations _._.____,-_

G. Quality Assurance

Addressed by prototyping, consistency and completeness checking by j
automated tools, and by structured walkthroughs. The man-machine dialo-
gue can be simulated.

H. Independent of.

hardware architecture, operating system architecture, and implementation
language. Note however that some of the automated tools for code genera-
tion produce source code written in PLAIN.

3. Support Aspects

A. Automated Tools

The tools include code generation from PLAIN, consistency checkers, a data-
base interface, and the control system for management of documentation
and version control.

B. Language

a. Requirements Specification nonprocedural specification language
called BASIS

b. Architectural Design - informal structure charts

c. Detailed Design - uses a pseudocode pdl, with formal syntax and semi-
" - -formal semantics.

4. Management Aspects

Project management is supported by the USE control system, which provides on-
line information on the status of modules and the development process. . -

II 4-70

Lu7 "



USE key:L

The USE control system also supports technical management by managing the
documentation and can be used to enforce project standards. The other tools
assist in system validation.

The USE control system supports configuration management by controlling ver-
sions of modules and systems.

6. Usage Aspects

A. Equipm ent/ Facilities Needed for USE use:

The automated tools run under UNIX version 7 or BSD 4. 1.
L

B. Usability______________ __ _____

Level Methodology

Easy to Use I
Moderately Easy to Use 4X
Moderately Difficult to Use _______

Difficult to Use i
C. Extent of Use

USE has only been used in a university setting.

6. Transferability

AI. Availability

In public dlomain.

A1 Training and Experience Required

Training/Experience Nceded
nionthis JUSER IMANAGER IORGANIZATION

C. Primary Sourre of Documnentation



USE keyi.L

Also see:

References

[Wasserman82j.j
Anthony 1. Wasserman, "The User Software Engineering Methodology: an
Overview," in Information System Design Methodologies -- A Comparative

Review, ed. A.A. Verrign-Stuart, North Holland Publishing Company, 1982.

K 4-72



-1 7q PT -7 7 F-7 -J Y7

4.15 Tool Set Description Format

1. General Aspects

A. Identification

"" -. Gives the name and acronym of the tool or tool set and identifies the -

developing/supporting organization.

B. Methodologies

Lists what methodology the tool set supports.

C. Life cycle phases supported:

Identifies which of the specification phases the tool set supports:

- requirements analysis -'

- architectural design (intermodule communication, data structures)

- detailed design (module functionality)

D. Software Categories

Lists standard software categories which are compatible with this methodol-
"-. ogy.

Category # Category___ ___

I Arithmetic-based 2 Event Control

3 Process Control 4 Procedure Control

5 Navigation 6 Flight Dynamics

7 Orbital Dynamics 8 Message Processing

9 Diagnostic S/W 10 Sensor/signal Processing

I I Simulation 12 Database Management

13 Data acq, isition 14 Decision/planning aids

15 Data presentation 16 Pattern/image procesing

17 Computer System Sortware 18 S 'W development tools

4-73

J .. .



-- .S W .. . ... * --

E. Suitable for systems of qize:

- Small (<2,000 lines of code) ?

- Medium (2,000 - 10,000 lines of code) .

- Large (>10,000 lines of code) ?

2. Technical Aspects

A. Supports

Traceability -"

Functional hierarchy/decomposition

Data hierarchy/data abstraction
Interface definition
Database definition

Data flow . -.
~~~Sequential control flow"".

Cone urrency /parallelism ii "

Formal program verification
i l~~~terative development ". .._

B. Workproducts -

Are they relevant to MIL-STD documentation?

a. Textual

Description of reports, documents produced.

b. Graphical

Description of diagrams produced.

C. Performance Specification

D, es the toolset have the capability to specify or test timing and/or accu-
racy constraints that apply to individual system functions?

P. Operating Qualities Specification

Does the toolset have the capability to specify the following constraints?

4-74

" - - - *. s.- -. -. . , . . ---: ::::" ::::-:- i: ::"" :.: >":*-- : -v:' : :" . . -::i:i: i:i !:i:: i: : : .::::: :::::: :: ::::: : : :: : .! : : ::

- Man/machine interaction

- Fault-tolerance

- Portability

- Reusability

- Security

E. Ada compatibility

Ada Feature Supported

Packages ______

Tasks C
Generics

Exception Handlin "_

*Types X
Representations -__"

X indicates support of feature.
C indicates conflict with feature.

F. Quality Assurance

flow does the tool set support

*'-"a. Consistency checking ?

b. Completeness checking ?

c. Validation ? by a manual or computer-processed procedure ?

d. Rapid prototyping?

Does it prototype the man-machine interface? the software modulariza-
tion scheme' the functionality of the system? Is the execution mode of

the prototype a simulation or a symbolic execution? Is the prototype
suitable for pre-release?

e. Performance validation ? of correctness or efficiency?

4-75

3. Support Aspects

U A. Degree of Integration

Vertical - within one phase of the software life cycle? Or horizontal - across
more than one phase of the software life cycle?

B. Language

Identifies language(s) used for specification phases and its degree of formal-
ity.

-Requirements Specification

-Architectural Design

Detailed Design

4. Management Aspects)

Does the tool set sui port project, technical, or configuration management? How?

5. Usage Aspects

A. EquiprnentlFacilties Needed to use

Identify specific hardware and software (operating systems, graphics pack-
ages) required to use the tool set or associated automated tools.

B. tCsabiy

Level Mthodology
Easy to Use_______

Moderately Easy-to Use ______

Mioderately Difficult to Use _______

Difficult to Use _______

C. Eitent of Use

H as the tool set been used outside the developing organizat i- n' I low much?

-1-76

4.4

6. Transferability

A. Availability

Is the tool set in the public domain, commercially available, etc.?

B. Training Available

- Public documentation

- Proprietary documentation

- Consultants

- Seminars - scheduling and cost, if known

C. Training and Experience Required
[4 p .

",______ Training/Experience Needed

months USER MANAGER ORGANIZATION . -

a1-3
3- 6- "

.. ~~> 6 .L-=

The table entries reflect the amount of training and experience time required
to use the tool set effectively. A USER is an individual who develops or
assists in developing requirements and/or design specifications. An ORGAN-

IZATION is a group of users developing specifications as a team.

* 4-77

,. --..

- -- -,"S -

TAGS key.Ca

4.16 TAGS Tool Set Evaluation
'. ~ 1. General Aspects

A. Identification

TAGS

Teledyne Brown Engineering
Cummings Research Park
Huntsville, AL
(205)532-2036-- Jerry Gotzold

B. Methodology

More elaborate version of SADT methodology.

C,~ Life cycle phases supported: All.

D. Software Categories

category

2 Event Control
3 Process Control

4 Procedure Control
5 Navigation
6 Flight Dynamics
7 Orbital Dynamics

8 Message Processing
10 Sensor and Signal Processing
11 Simulation

13 Data Acquisition

E. S uitable for systems of size: Any.

2. Technical Aspects

A. Supports

_1-78

TAGS key.,Ca

Capablilty
Traceability

X Functional hierarchy/decomposition
X Data hierarchy/data abstraction
X Interface definition
X Database definition - as types
X Data flow
X Sequential control flow
X Concurrency/parallelism

Formal program verification
X Iterative development

B. Workproducts

They are not relevant to MIL-STD documentation.

a. Textual

* "The textual workproducts are tables that contain definitions for the
input/output across an interface, for variables internal to a process
block, and for constants internal to a process block. These tables have
a standard format. All diagrams can be commented.

b. Graphical

Schematic block diagrams (SBD) which describe all components of the
system and the data interfaces that connect them. Input/output rela-
tionships and timing diagrams (IORTD) which show the overall control
flow for a single schematic block diagram component. Predefined pro-
cess diagrams (PPD) which depict reiterated sequences of actions.
Data structure diagrams (DSD) which graphically represent data
defined in a parameter table.

C. Performance Specification

The ability to specify and test timing constraints is expected in third quarter
,. 1983.

D. Operating Qualities Specification

Man/machine interaction is not directly addressed, but a human can be
modeled as a process element.

4-79

.4--. ,_

TAGS key. C..a

E. Ada compatibility

Ada Feature Supported

Packages X
Tasks X
Generics X
Exception Handling _____

Types X
Representations ,_,__..,-

F. Quality Assurance

There is a tool called a diagnostic analyzer that assists validation of the
requirements. It does static analysis of individual diagrams for consistency
and completeness. Consistency of interfaces and flows can also be checked.

G. Rapid prototyping

Prototyping of the functionality of the software system specified is expected
in third quarter 1985. The tool will be generating Ada source code.

3. Support Aspects

4. Degree of Integration

The tools are well integrated both within and across phases of the software
life cycle since they use a common database and the human interface is uni-
form across the tools.

B. Language

The diagrams use a formal language called IORL (Input/Output Require-
ments Language). IORL consists of mathematical expressions, types (charac-
ter, numeric), and graphical symbols to represent processes and flows. Since
the methodology is strictly top-down decomposition, IORL is used for all
three phases.

4. Management Aspects

The tools directly support technical management (quality assurance) by static .

analysis, by maintaining a common project database, and by simulation of the
d1es ign.

4-80

, .". . .,. .

TAGS key.Ca

A tool for configuration management is expected to be released at the end of
1984.

S. Usage Aspects

A. Equipment/Facilities Needed

Tags requires APOLLO workstations and a VAX running VMS.

B. Usability

____ Level____ Tools

C. Extent of Use

TAGS is a new product, still undergoing development.

6. Transferability

At. Availability

TAGS is commercially available. A license for 1-8 workstations and I VAX
is approximately $105,000.

B. Training Available

Teledyne FPrown supplies proprietary documentation, consultants, and sem-
inars (somie of thiese items includIed in license fee).

C. Training and PExperience Required

________ Train ing/'Experience Needed

months UJSE-R MANAGER ORGANIZATIONV ___

- - - 6. ..

TAGS key.C~a

A developer needs a 2-3 week course which consists of an overview, details of
using the tools, hands-on experience with the tools, and a walkthrough of a
small system that was previously designed.

- 82- -

. .. - -.

4117 A GUS Il Tool set Evaluation ky0

I. enealAspects

A.Identification

S Boeing Computer Services Company
P0 9ox 24346
Seattle, WA 08124-0346

H206)

B. Alethodology

A CAD/CAM software engineering environment for design that uses the
Yourdon methodology.

C. Life cycle phases supported:

All specification phases are supported, however the requirements analysis
phase is only supported by data flow diagrams.

D. Softuware Categories

Same as Classic 'Yourdon -

categ ry
2 E~vent Control
3 Process Control
9 Message Processing
15 Decision andl Planning Aids
16 Pattern and Image Processin

E. .Suitiable for s~ystems~ of size: Any.

2.Technical Aspects

.4. .Supports

1-83

ARGUS keyD_a

Capability
4Traceability - planned as future

~. '-capability

X Functional hierarchy/decomposition
X Data hierarchy/data abstraction
X Interface definition
* Database definition - Via a data

dictionary
X Data flow
X Sequential control flow
• Concurrency/parallelism -planned

as future support of Real-time
Yourdon

Formal program verification
X Iterative development

B. Workproducts

They are not directly usable as MIL-STD documentation.

/ , . a. Textual

Specification of modules in proscribed formats, customizable by project
and PDL descriptions of module behavior.

b. Graphical

Data flow diagrams, structure charts.

C. Performance Specification

Not currently supported, planned as future capability.

D. Operating Qualities Specification

Man/machine interaction is directly addressed. Argus can produce sample
report formats or screen layouts. The ability to specify security properties is
planned as a future capability.

E. 4da rompatibility

Although Ada is not directly supported, the resulting designs should have
same compatibility with Ada as the Classic Yourdon methodology does.

• . .,. •

.... • .-8..

i,' t" . . , - -; .; .. n, ,t .- ,.,.,-. r. _..t :.. , ... - -- . .. - -%

ARGUS key.'D a

F. Independent of

In theory ARGUS workproducts should be independent of the planned
implementation language. However, the development tools for programmers
support Fortran and Cobol.

K 3. Support Aspects

A. Degree of Integration

The tools are well integrated both within and across phases of the software
life cycle since they use a common database and the human interface is uni-
form across the tools. L

B. Language

The graphic notations of Yourdon methodology are used in requirements
specification and architectural design. Detailed Design can be done with a
pseudocode pdl.

4. Management Aspects

- Project Management

The management toolbox includes scheduling tools for controlling both pro-
jects and activities. A tool for tracing specific action items assists manage-
ment in controlling activities across projects. An electronic spread sheet has
proven extremely valuable to project managers in better controlling resource
expenditures. Electronic scheduling and phone list capabilities are also pro-
vided. Various other managerial aids will be provided in future releases.
{froin "What About CAD/CAM for Software? The APGUS Concept" by
Leon G. Stucki, 1983 IEEE report # C111919-0/83/0000/0129, pp 129-137}

- Technical management

The tools directly support quality assurance by static analysis, and by main-
taining a common project database.

Configul ration management

Implemented, not yet released

5. Usage Aspects

4-85

.:1..4

• •]

ARGUS key:Da

A. Equipment/ Facilities Needed

Currently, the use of ARGUS 11 requires an IBM PC-XT. ARGUS is, how-
ever, intended to be portable to other systems.

B. Usability

Level Tools-

Easy to Use lx
Moderately Easy to Use [

ModertelyDifficult to Ue ___

Difficult to Useli

C. Extent of Use

ARGUS has been in continuous development since the late 1970's. It has
only seen use within Boeing.

6. Transferability

A. Availability

Commercially available from Boeing Computer Services.

B. Primary Source of Documentation

Boeing Computer Services

C. Training and Experience Required

________ Train ing/Experience Needed

nionths USER'l MANAGER ORGANIZATION
X __ _ __ _ _

1'-.3 _ _ _ _ _ _ _ _ _ _

p .~~~~~~~3- 6 ___ _____ _____ _

EXCELERATOR key.D~b

4.18 EXCELERATOR Tool set Evaluation

1. General Aspects

A. Identification of Tool set

EXCELERATOR -

Index Technology Corporation
Five Cambridge Center
Cambridge, MA 02142
(617) 491-7380L

B. Methodology

Classic Yourdon.

C. Life cycle phases supported: All. L

D. Software Categories

Same as Classic Yourdon -

[# category
2 Event Control
3 Process Control
8 Mlessage Processing
15 Decision and Planning Aids

1, 6 Pattern and Image Processing

E. Suitable for systems of siz: Any.

EXCELERATOR key.D..b

2. Technical Aspects

A. Supports

Capability
Traceability

X Functional hierarchy/decomposition
X Data hierarchy/data abstraction
X Interface definition
X Database definition - Via a data

dictionary
X Data flow L
X Sequential control flow

Concurrency/parallelism
Formal program verification

X Iterative development

11. Workproducts

The workproducts are not directly usable as MIL-STD documentation.

a. Te.rtual

Can generate textual mini-specs (for one module) for project reviews,
and report and screen mockups.

b. Graphical

Data flow diagrams, minispecs (logic within a module), data model
diagrams, structure charts.

C. Operating Qualities Specification

Man/machine interaction is directly addressed with report and screen
mo,ckups.

1. .1da compatibility

Does not directly support Ada, but compatibility of designs should be the
same ,as using the classic Yourdon methodology.

A.-°

• .: •- , . • : % .'. . . - - . . . • . -.. ' 2 -. . - . , -°

V.

EXCELERATOR key:Db

E. Quality Assurance 71
Consistency is only assured for items described by the data dictionary. One
of the automated tools does completeness and consistency checking of data

3. upor Apets7flow diagrams.

~~3. Support Aspects :

A. Degree of Integration

The tools are well-integrated within a phase.

B. Language L-

Requirements Specification and Architectural Design are done with the
graphic notation of Yourdon methodology.

4. Management Aspects

Technical management is supported by a common project data dictionary that
assists manual procedures for quality assu-ance. Tools that address project
management are planned for the future.

5. Usage Aspects

A. Equipment/Facilities Needed

Use of EXCELERATOR requires either an IBM PC-XT, 3270-PC or PC-AT.

B. Usability

Level Tools

Easv to Use X

Moderately Easy to Use
Moderately Difficult to Use -

Difficult to Use _-____

C. Extent of Use

EXCELERATOR is a commercial product. It has been used outside of Index
Technology Corp., its developer, on more than ten projects.

_-Zg ----

EXCELERATOR keyiD-b

6. Transferability

A. Availability

EXCELERATOR is commercially available through Index Technology Cor-

poration or local IBM branch offices.

B. Primary Source of Documentation

Index Technology Corporation

C. Training and Experience Required

_______ Training/Experience Needed
months USER MANAGER ORGANIZATION
<1 X __ _

4-90

PROMOD ke yD-c

4.19 PROMOD Tool set Evalualion

1. General Aspects-

A. Identification

PROMOD

GEl Systems House
Albert Einstein Strasse - 61
D-5100 Aschen, Germany
Tel: 02,108/1.30

B. Methodologies

PROMOD uses classic Yourdon for requirements analysis and a combination
of Yourdon Structured Design and the principle of information hiding for

* design. As a notation for detailed design, it is possible to use use a pseudo-
code (like Caine-Farber-Gordon) pdl or or the Jackson Structured Program-
miing notation.

C. Life cycle phases supported: All.

D. Softwuare Categories

Same as (Classic Yotirdon -

category
2 Event Control
3 Process Control

8 Message Processing
15 Decision andl Planning Aids

F1 - Pattern and Image Processing

L' .'uiable for *iy.slers of .98',e.- Anly.

4-0

PROMOD key.D~c

2. Technical Aspects

A. Supports

Cap abililty
Traceability

X Functional hierarchy/decomposition
X Data hierarchy/data abstraction

X Interface definition
X Database definition -Via a data

d .1ictionary

X Data flow
X Sequential control flow

X Conc urrency/parallelism - can
specify synchronization

Formal program verification
X Iterative development

D. 11"orkproducts

They are not in MIL-STD form, although some of the graphical output can

be used to develop MIL-STD documentation.

The graphical output includes:
Data flow diagrams, minispecs (logic within a module), Nassi-Schneidermann
charts if desired, call trees, and data hierarchy trees.

The only textual workproduct would be any pseudocode produced for
detailed design.

A da rompatibility

l'l)\OO dm-, not dlirectly support Ada but resulting designs can be com-
paile III the tullowing ways:

PROMOD key:D-c

Ada Feature Supported

Packages X-

Tasks X

Generics XI.
Exception Handling .-

Types X-:'-

Representations WW

D. Quality Assurance

Consistency checking is supported by syntax directed editing along with
syntax and semantic checking. There is an analysis for checking complete-
ness.

3. Support Aspects

A. Degree of Integration

The tools are well integrated both within and across phases of the software
life cycle since they use a common set of VMS files and the human interface
is uniform across the tools.

B. Language

Requirements Specification is done with the graphic notation of Yourdon
methodology. Architectural Design is done with the graphic notation of
Yourdon methodology. Detailed Design is done with either a pseudocode
pdl, or the JStP notation, or Nassi-Schneidermann charts.

4. Management Aspects

Project management is based on a project model and a project database. These
can be used to manually produce a work breakdown structure and milestone
d(efinition. 'Fools to support these tasks are expected in the future.

lechnical management is ba.sed on tools that directly support quality assurance by

static analyi, and by maintaining a common project file structure. The metho-
(lol,,gy recoiL,],'s metrics ;,r quality assurance ala Yourdon. The transition
from ph:Lse to ph:Lse is supported iw the project file structure.

5. Usage Aspects

,. -

PROMOD eyD

A. Equipmen t/Facilities Needed

PROMOD requires a VAX running VMS or an IB3M or Victor CPU.

B. Usability

Level Tools

Easy to Use I
Moderately Easy to Use I
Moderately Difficult to Use X
Difficult to Use l

C. Extent of Use

PROMOD has been used outside the developing organization on more than

10 projects.

6. Transferability

A. Availability

Commercially available.

B. Training Available

There is both public and proprietary documentation available on PROMOD

from its developing organization, GEL

C. Training and Experience Required

________ Train ing/Experience Needed
months USER MANAGER ORGANIZATION

3- 6 __ ___ _

4-94

PSL/PSA

4.20 PSL/PSA Tool Evaluation

1. General Aspects

A. W. "'. A.. t io

PSL/PSA - Problem Statement Language/Problem Statement Analyzer

Dan Teicherow

ISDOS Project
University or Michigan
Ann Arbor, MI 48109"

B. Methodologies

Basically documents data flows, whether for requirements or design analysis.
Can be used with any methodology that uses data flow diagrams.

C. Life cycle phases supported:

Supports data flow analysis of requirements analysis and architectural design
phase. Can maintain some module documentation.

D. Software Categories

Depends on methodology PSL/PSA is used with.

E. Suitable for systems of size: Medium and Large.

4-95

- ,- -..

°. . .-. .|

71ii' -

21 -9 -~i[!

PSL/PSA

2. Technical Aspects

A. Supports

* Databse defiii-Vaadt

dictionary

* Sequential control flow - has an IS
TRIGGERED BY attribute
Concu rrency /parallelism

Formal program verification
X Iterative development

B. Workproducts

Extension of the basic tool can provide reports consistent with MIL-STD

dJocumnentation JThe Ihughes' version known as ASAT has this capability].

a. Textual

The contents of the database PSL/PSA maintains can be reported in
various ways.

b. Graphical

Data flow dliaas.

C. ,Ada coinpatibihty Not applicable.

1). itualit y ,qs ura n re

The too[maintains consistency or the information in the database and
recordls whvin upd)ates are effectedl. The (latahase can be analyzed to find
dlangling ent ries or dlefinit ions not usedI anywhere. The PSA portion of the

* . tO 0001 can be' uscol to attempt to verify properties concerning the information
* iti3oldodat a flows inaint aineol by the database.

PSL/PSA

E. Independent of

Implementation language, hardware architecture, and operating system
architecture.

3. Support Aspects

A. Degree of Integration

There is basically only one tool.

B. Language

PSL (Problem Statement Language) is basically a data base manipulation
language with predefined keywords to represent the relationships the data-
base is maintaining. The syntax is formal; the semantics are semi-formal.

4. Management Aspects

The reports that can be generated from the database can be used for checking
some of a project's progress against milestones.

The consistency of data flow can be checked by the tool which analyzes data
flows.

The database can contain responsible person information.

5. Usage Aspects

A. Equipment/Facilities Needed

PSL/PSA is available on a wide range of CPUs. Note that its computa-
tional requirements are quite heavy.

I?. Usability

Level Tools

Easy to Use _ _

Moderately Easy to Use X
Moderately Difficult to Use _____"

Diffcult to Use -__

4-97

"..,..... ,...........................: ,.--,-,.,: ,.'-. -.-.... x, . - -.: ":. ,,. ... - .- .--- - ... ", .- . .- - . ,,"

.,. .PSL/PSA

.• 'S.' C. Extent of Use

PSL/PSA is a mature software product. It has been used on a large number
of information systems development projects by a large number of different
organizations.

6. Transferability

A. Availability

PSL/PSA is commercially available for about $40,000 and there is a govern-
ment owned version called CADSAT.

B. Training Available

Proprietary documentation, consultants, and training courses are available j
from the ISDOS Project at the University of Michigan in Ann Arbor.

C. Training and Experience Required

,-____._ Training/Experience Needed

months USER MANAGER ORGANIZATION
<1 X __'"

1 -3 X
3-6 X
>6 _-__

D. Primary Source of Documentation

Dan Teicherow

4-98

...

5.0 SOFTWARE ACQUISITION LIFE CYCLE

5.1 INTRODUCTION

This section provides brief paragraphs describing two specific standards for the software
acquisition life cycle: AFR 800-14 and ML,-STD-SDS. Currently, AFR 800-14 is the
standard for Air Force software acquisition. MIL-STD-SDS is in final stages of develop-
ment as the DoD standard for software acquisition. The two standards do not conflict
with one another, although they do use different names for their life cycle phases.

The intention of this guidebook is to aid the project manager in selecting a methodology
and support tools for a particular system category and life cycle phase. Additionally,
the guidebook will aid the project manager in deciding which methodologies will support
the specification activities of the remaining life cycle phases. The guidelines will assist
the software development manager in selecting specification technologies and tools to

* assist in meeting the specification needs of the system requirements, software require-
ments, and software design activities.

The following paragraphs describe the two life-cycle standards mentioned above and,
further, describe how the requirements and design activities are supported by the
methodologies in this guidebook.

5.2 AFR 800-14 SYSTEM ACQUISITION LIFE CYCLE

The system acquisition life cycle cttegorizes overall program management activities. Its
five phases extend from program conception to termination. It can be thought of as the
larger system framework within which the software development life cycle takes place.
The five phases of system acquisition are shown in figure 5-1.

5.3 AFR 800-14 SOFTWARE DEVELOPMENT LIFE CYCLE

'rhe software development life cycle fits within the larger program framework of the sys-
teni acquisition life cycle and may (-cur within one, or span a number of system acquisi-
tion lift-cycle phases. Specifically, software development comprises six phases: Analysis,
Design, Coding and Checkout, Test and Integration, Installation, and Operation and

,.. Support. These six pha.es and their definitions are shown in figure 5-2.

S. -,..

, *. . - q.- '

AFR 00-14 SYST M ACQUISITION LIFE CYCLE J
PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE 6

CONCEPTUAL

VALIDATION

FULL-SCALEDEVELOPMVIENT4 JL...

PRODUCTION -

DEPLOYMENT

Conceptual: In which solutions to problems are planned, refined,
and alternative solutions conceived. Preliminary
requirements are formulated.

-alidation: In which major system characteristics are refined
through studies, preliminary nodeling, computer
program development, etc., to validate the choice
of alternatives and to decide whether to proceed
into the next phase.

Full-Scale In which all the major items comprising the system(s)
Development: are designed, fabricated, tested, and

integrated. The operation of the system closely
resembles the operation of the production system.

Production: In which all the production systems are completed,
delivered, and accepted.

Deployment: Lasts from the time the first system becomes
operational until the last system is removed from
operational inventory.

Figure 5-1. AFR 800-14 System Acquisition Life Cycle.

" ".Z' .

AFR 800-14 SOFTWARE DEVELOPMENT LIFE CYCLE

PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE S PHASE 6I!REQUIRE
MENTS
ANALY-SIS " "

DESIGN

CODING/
CHECK-

OUT

TEST/
INTE-

GRATION

INSTAL-
LATION

OPER-
ATION/

___ ___ _____ SUPPORT

Requirements Defines functional, interface, and performance requirements
Analysis: for software.

Design: Develops a design approach, including mathematical models,
functional flow charts, and detail flow charts. Also
defines relationships among components.

Coding and Coding translates flow charts into computer programs and
Checkout: data. Checkout converts intial code and data into an

operational computer program. The software is operational
when it uses predefined inputs and produces correct outputs.

'est and "'(-ets the computer program against requirements in the
Integration: development specification. Tests all of the computer

program, including individual computer program function or
module tests through total computer program formal
qualification tests.

lnt:Ill;tt ion: Includes loading and running of computer programs after
successful qualification and integration.

()perati on and Assesses the operational suitability of the system.

-P-

Figure 5-2. AI"? 800-1.1 Software Development Life Cycle.

.- 3

5.4 DOD-STD-SDS COMPUTER SOFTWARE DEVELOPMENT LIFE
CYCLE

The DOD-STD-SDS (a draft SDS Documentation Set has been released that contains
DOD-STD-2167, MIL-STD-483, MIL-STD-490, and MIL-STD-1521) is a standard that
establishes requirements to be applied during the development and acquisition of
Mission-Critical Computer System (MCCS) software, as defined in DOD Directive
5000.29. The standard may also be applied to non-MCCS software development and
acquisition.

The DOD-STD-SDS standard comprises six phases: (1) Software Requirements Analysis, 2
(2) Preliminary Design, (3) Detailed Design, (4) Coding and Unit Testing, (5) CSC
Integration and Testing, and (6) CSCI-Level Testing. All analysis performed prior to
phase 1 is termed Pre-Software Development. The six phases and their relationship to
the basic reviews that occur during the software development life cycle are shown in
figure 5-3.

5.5 RELATION OF METHODOLOGIES TO LIFE CYCLE PHASES

The guidelines in this document are intended as an aid to the project manager during
the requirements and design phases of the software acquisition life cycle. Requirements
analysis can be broken down into two components: system requirements analysis and
software requirements analysis. Software design is a single phase.

Figure 5-4 shows the relationship of the methodologies described in section 4.0 of this
document and the requirements and design life-cycle phases.

--4

DOD-STD- DS SOFTWARE DEVELOPMEN LIFE CYCLE

PHASE I PHASE2 PHASE 3 PHASE 4 PHASE6 PHASE 6

SOFTWARE
REQUIRE-

MENTS
ANALYSIS

PRELIM-
INARY

DESIGN

DETAILED
DESIGN

CODING
AND UNIT
TESTING

CSC INTE
GRATION/
TESTING

CSCI
TESTING

Software Define and analyze functional, performance, interface, and
Requirements qualification requirements for each CSCI.
Analysis:

Preliminary Develop a top-level design of each CSCI which completely
Design: reflects the requirements specified in the SRS and IRS(s).

Detailed Develop a modular, detailed design for each CSCI.
Design:

('oding Code and test each unit making up the detailed design.
and U'nit
Testing:

(S(Integrate units of code entered in the developmental
Integration configuration and perform informal tests on aggregates
and 'resting: of integrated units.

(ISCI Conduct formal tests on each CSCI to show that the
Testing: CSCI satisfies its specilied requirements. Record and

analyze test results.

Figure 5-:3: I)oD-SrD-SDS Software Development Life Cycle

. -7- -

LIFE CYCLE PHASEJ
____ REQUIREMENTS DESIGN METHODOLOGY

Af A X X DSSD
E_____ BX HDM

H D X X SA/SD
o K E x X SCR
D E F x ______ SREM
o y G X X VDM
L H4 _____ _X DCDS
O -1 X X JSD
G J x _______ PAISLey

" K X X SARA
____L x X USE

where X yes, covers this phase.
=partial coverage.

Figur... 5-4 Life Cycle Phase Coverage

h'4- . ".

.- . .. * "- 4"U. -

U4 .. ~ .. "... . .

REUIEENS DEIG ETOOLG - .

*"- T C X - * SADT- - - -- -- ="

6.0 SAMPLE PARAGRAPHS FOR STATEMENTS OF WORK

6.1 INTRODUCTION

Il Is section provides sample statement of work paragraphs, which are examples of the
various ,,e that can b e d to sp .e i the use of l ^tware . e.. ui.e.i.nUL •l

dologies or software design methodologies with the aid of the Specification Technology
(;uidebook. The sample SOW paragraphs are written to allow various degrees of con-
straint in the imposition of requirements and design methodologies, from tight con-
straint to mild guidance. They may need to be modified or specific details added by the
Air Force acquisition manager to fit the development environment of a particular pro-
jict or the contractual relationship being considered.

The information in parentheses (,..) must be filled in by the acquisition manager. The
S()% paragraphs require that "implementation details" be provided by the Computer
Program Development Plan; but the acquisition manager may choose, in his specific con-
tractual arrangement, to use another CDRL item in which to request this detail. Exist-
ing data item descriptions (DID) for the specification and development of software may
not include provisions for the types of information generated by the selected/specified

* methodology. Therefore, the DID may need to be modified to provide a section for the
newly required inform ation.

S[,r tightly constrained requirements (sections 6.2 and 6.3), reference the desired metho-
"A e()gi ,s in section 4.0 by nam e and section num ber.

6.2 TIGIITLY CONSTRAINED--DIRECT SPECIFICATION

Thw llwing paragraph can be used to specify specific methodologies or techniques
identi'fied in the guidebook. The guidebook would thus serve AF personnel in selecting
slecification methodologies for mission software products. The methodology for each

,ft ware o)r ,duct, such -Ls ground support software and in-flight software, would be

d 1i'rm in ed sepjarately.I

4 -1

I". r " --.'-

Tightly Constrained--Direct Specification j
The computer program (... requirements/design...) shall be
specified in accordance with techniques describedin the
Specification Technology Guidebook, RADC-TR-85-XX. The
following methodologies shall be used:

fMethodology Guidebook Phase(s)
Section No.

The methodologies and techniques, and necessary details,
shall be described in the Computer Program Development
plan (see CDRL).

6.3 TIGHTLY CONSTRAINED--SUBSET SPECIFICATION

The following paragraph can be used to specify a minimum set of techniques plus the
use of the guidebook by a contractor to select additional specification or design tech-
niques for the entire software project or an individual computer program.

Tightly Constrained - Subset Specification

The computer program (...requirements/design...) shall be
(...specified/!designed...) with techniques described in
the Specification Technology Guidebook RADC- TR-85-X..'-
As a minimum, the following specification (or design)
methodologies shall be used.

Methodology Guidebook Phase(s)
Section No.

Selection of additional techniques or methodologies, using
an orerall ,4iynificance level (081) of (...) shall be
performed in accordance with procedures described in section
2.) of the ,peiifirattons Technology (;idebook. The

M resulting set of methodologies and necessary implementation
details shall be described in the Computer Program 1)evelopment

lan (.see (7')h'L) hationale for the selection of those
techniques from the candidate set identified by
the .'pecuic ation (,iuidebook, .hall be provided

.&. .

p .° •, +- .o + ' + o- . % - °°+ • , . • . . . o + . • . .• , . ° •

Ab-A162 457 SPECIFICATION TECHNOLOGY GUIDEBOOK(U) BOEING AEROSPACE 23/
CO SEATTLE MdA D R ADDLEMAN ET AL AUG 85
RADC-TR-85-135 F38682-84-C-0873

UNCLASSFIED F/G 9/2EuEEEEEEEEElE
Eii11EEE11111E1111EE1

i1111111111111

,%2.

IIl

11111JA .O 28 2.0

J-~~
UIB'*125 1ffl1.4 ____

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OT STANDARDS 1963 A

6.4 MODERATELY CONSTRAINED SPECIFICATION

The following paragraph can be used to specify the use of the guidebook for selecting
software requirements and design techniques. An overall significance level (OSL) is the
only predetermined factor. The paragraph does not constrain the developer to use
specific methodologies, nor does it identify specific phases during which the methodolo-
gies are to be applied.

Moderately Constrained

The computer program (...requirements/ designs...)
shall be (...specified/designed...) in accordance with
the methodologies described in the
Specification Technology Guidebook, RADC- TR-85-XX.
Selection of the methodologies, using an overall
significance level (OSL)of (...) shall be performed in
accordance with procedures described in section 2.0 of the
Specification Technology Guidebook. The resulting
methodology, and necessary implementation details, shall be
described in the Computer Program Development Plan (see
CDRL). Rationale for the selection of the methodology,
from the candidate set identified by the Specification
Technology Guidebook, shall be provided.

6.5 LOOSELY CONSTRAINED SPECIFICATION

The following paragraph can be used to allow the contractor extensive freedom in select-
ing software requirements and design methodologies.

Loosely Constrained

The computer program (...requirements, designs...) shall
be developed using methodologies described in the
Specification Technology Guidebook, RADC-TR-85-XX. Selection
of techniques shall be in accordance with procedures
described in section 2.0 of the Specification Technology
Guidebook. The resulting set of methodologies and
techniques, shall be described in the
Computer Program Development Plan (see CDRL). Rationale
for the selection of those methodologies and techniques,
from the candidate set identified by the Specification
Technology Guidebook, shall be provided.

6-3W

. . . .- .

APPENDIX A: ARMAMENT

The software usage described in this appendix is based on a representative site devoted
largely to this mission. Therefore, the procedures covered in this appendix many not
include all aspects of the armament mission.

Al. ARMAMENT DIVISION

The Armament Division (AD) is a developing agency for tactical weapon systems, and
particularly for threat, missile, and scoring systems. All embedded software systems
development at AD is performed by contractors. The contractors are usually small, spe-
cialized, high-technology companies, but larger aerospace companies also contribute to
the systems development. The software contained in these systems typically tends not
to be critical, even though the systems themselves may be critical. The contractors
design, develop, and test the software according to contractor-defined standards and
under the general contractual-level supervision of Air Force personnel. Testing practices
vary widely among the many contractors supporting the AD.

A2. AD MISSION

The primary mission area applicable to the Armament Division is armament. Secondary
mission areas are aeronautical and missile/space, including avionics systems and air-to-
air and air-to-ground missile systems.

A3. SOFTWARE DEVELOPMENT ENVIRONMENT

The most significant category of software is the operational software for embedded sys-
tens. The embedded systems developed at AD are generally found in three categories:

a. Threat systems. Defensive and offensive radar, targeting and tracking systems,
and electronic countermeasures.

h . Missile systems. Air-to-air and air-to-ground missile systems.

c. Scoring systems. Proximity detectors for projectiles, used in aerial gunnery train-
ing.

The data processing and administrative software areas was not surveyed; typically,
thse systems are in place and are not subject to extensive new development. Also, the
embedded operational software systems are more germane and critical to the primary
[mission of the Al).

A-i

,-.,.. Pe
-.... _

M^X , %.-LI -

General Environment. Software development is conducted as a part of embedded
systems development. System requirements are defined by Air Force personnel and then
the systems and the software are designed, implemented, and tested by contractors
selected in competitive bidding. The Air Force may participate in the definition and
specification of detailed requirements. The companies range from small businesses to
major aerospace corporations. Procurement requirements for software are similar for all
systems development and their implementation is monitored by design reviews, audits,
and detailed reviews of contractor-furnished documentation. r
Software (computer programs and associated data) typically comprises a significant
share of the contractors' system development effort (labor), ranging up to one-half or
even more of the total effort.

Standards. The Armament Division complies with the 800-series Air Force regulation L
for systems development. The following regulations and standards are applicable to
embedded systems and software development:

e AFR 80-14 (Test and Evaluation)

e AFR-800 (Management of Computer Resources in Systems)

* MIL-STD-A83 (Configuration Management Practices)

* MIL-STD-1521A (Reviews and Audits)

e MIL-STD-490 (Specification Practices)

e MIL-STD-1750A (16-Bit Instruction Set Architecture)

* NIIL-STD-1589A (JOVIAL J73 Language)

- MIL-STD-1815 (Ada Language)

* IEEE STD-716 (ATLAS Language)

* American National Standard X3.9 (FORTRAN 77 Language)

Administration. Contractors are required to identify and account for embedded
software as computer program configuration items (CPCI), including support computer
programs (such as ATE software). The programs are controlled using allocated
configuration identification and product configuration identification, with associated
Part I and Part II specifications. CPCI-to CPCI and CPCI-to-hardware interface
specifications are also required. Computer programs are subjected to a sequence of
reviews and audits: preliminary design review, critical design review, functional
configuration audit, and physical configuration audit.

A-2

* .,-."

.- ..

Languages. Approved high-order languages are mandated for embedded computer

programs. The specified languages are JOVIAL J73, Ada, and FORTRAN 77, in that

order of priority. The specified language for automatic test equipment (ATE) is

ATLAS. Exceptions to the priority of the approved list must be authorized; the use of

assembly language or nonapproved higher order language (HOL) subsegments must also

be authorized.

Support Software. Contractors are encouraged to use off-the-shelf components and

support tools. The following support tools are required:

a. An efficient compiler (in terms of code generated) and code generator for an

approved HOL.

b. A software development station with aids, including a programmable read only

memory (PROM) programmer, if applicable.

c. A complete support software library, including but not limited to an editor, link-

ing loader, and run-time support routines.

d. Compatible hardware and software peripheral equipment

Capacity Requirements. Embedded software is required to have a 30% spare capa-

city in memory utilization. Also, the software is required to exercise only 70% of the
computer's throughput and input/output channel capacity.

Coding Standards. Contractors must establish coding standards for software

development. The following minimum requirements are imposed:

a. Modularity. Computer programs shall be modular in design. Module
identification shall be along functional lines with ease of maintenance being a
prime consideration. To the maximum extent practical, data base information
shall not be provided as in-line code. Rather, data shall be provided in a separate,
non-executable module or file.

b. Structured Programming. The principles of top-down, structured programming
shall be used to the maximum extent practical. Each module or submodule of the

computer program shall be designed with a single entry point and a single exit
Point. " "

c. Comments. Computer program listings shall contain comments that completely
describe the functions being performed in each program module.

A1. SOFTWARE (ILWRACTERISTICS 4
A-3

%2-

.,?~~~...... -. '-..........?...:............. "•".'}...... ,.:. ,.;,.

grm and grudsprytm, patcual fo syte tests usn ATE The 7--1-
- The most common categories of software developed are embedded operational pro.

computer programs range from small (under 16K statements) to large (64K to
200K statements), the project size ranges from small to medium, and the develop-
ment periods are relatively short (between 1 and 3 years). Emphasis is placed on
the adequacy of documentation, with the following document items being
representative:

9 System specificationE-7

9 Computer program development specification (Part I)

* Computer program product specification (Part HI) L

e Computer program development plan (CPCD)

A * Configuration management plan

e Interface control documentF7

* Operator's manual

* * User's manual

* Computer program test plan and procedures

The criticality of the computer programs developed at this site ranges from zero to
two. Grotind support andI system test programs are considered criticality zero,
while operational programs are either criticality one or two. Missile and weapon
systems software andl flight control systems software are considered more critical
than telemetry, simulation, dlisplay, and scoring calculation programs. However,
no(distinction was evident in the level of requirements for criticality one or two
software.

Only general information on the characteristics of the software was obtained for
the t hree categories of systems (developed at the site (threat, missile, and scoring
syste rits). 'lh-e are dIisculssedli the following paragraphs.

Il 1Threat Systemsb

Thei principa iiI ngiiges used in program implementation are FORTIZAN-77 and
' -ome l'iE':ly laingumage routines for special processes, such as input/output han-

dling. T he soft ware for these systems has been typically programmed on minicom-
puters, such as the F*CH PS El, NOVA-.3, VAX-Il, [it' 1000, ROLM, and PDP-L

A-4

N,

-. 4 *.+"- :i
i gram:and:ro:nd uppor systemshZJ patual for syte tests.sin A. ThA..

II/LSI-11. The system functions they perform include ground systems, antenna
control, network interfacing for mission data, servo/slave control, and target
scenario simulation (used in electronic warfare air crew training). Representative
functions that are implemented in software include the following:

" Interface to keyboard, CRT, and disk.

* Radar ranging and position calculation.

e Servo positioning.

* Message handling. L

e Radar systems monitoring.

* Console control interface.

e Radar systems simulation.

9 Tracking control.

e Target and threat data interpretation.

A4.2 Missile Systems

The principal languages used for embedded operational computer programs are
JOV-L, J73, and assembler. Because of the throughput performance require-
ments and limitations on available onboard memory inherent to missile systems,
,assembly language is commonly used to program the missile-resident computer
programs. JOVIAL is used in non-missile-resident software and ATLAS is used for
ground checkout programs. The onboard programs typically occupy 40K to 62K

" bytes of memory. The functions performed by thp onboard programs include the
following:

* Navigation

* Autoipilot

* Execiitive control

* (;idance

A-5

....

". ,. .-- ..--

.+.......+_........ +.~...,......:....-....+............,.,.... ,........+....-.,....- ..

e Tracking and stabilization

* Fusing

* Downlink telemetry

* Electronic counter-countermeasures

9 Built-in-test

The ground systems developed for missile contracts performs the following func-
tions: V

9 Data link interface

* Command receiver

e Radar processing

e Ground test

The ground test (ATE) software is developed and executed on minicomputers,
such as the PDP-ll; flight software is targeted for execution on a special-purpose
16-bit microprocessor, such as the General Missile Processor.

A4.3 Scoring Systems

Examples of scoring systems are the Digital Doppler Scoring System, Antenna
Identification Scoring system, and Aerial Gunnery Target System. These systems
typically are targeted for 8-bit or 16-bit microprocessors, such as the Intel 8080
and 8086. They are often coded in assembly language, using the Intel Develop-
ment System. The software functions performed encompass the following:

S.

" Graphics

9 Trajectory calculation

. Performance and statistics calculation

A-6
a *"-". - - -- - - .

% ".* '¢X4"-a - .. " . . " , . " -: . . -" - -" . " " "- -. . '.."."."". " "= . " '- -. " '- '' ."

-- "# • • , ' .' .t ,' . - .- .', ' % . . .- " " " " ". " " " .". " '" ' .*- .. "% --• " " - ".-"

u. =Z. . 7 2, * , - . . .' J .4 _ - ,) t 7J t kh :.. b' ''- 7%''" - . ,

- • Trajectory calculation algorithms

* Analog-to-digital conversion

e Telemetry (discrete and continuous)

e Front end formatting and filtering

A5. CATEGORIZATION OF SOFTWARE FUNCTIONS "

The list of software functions in this appendix is based on responses to surveys
performed as part of the preparation of this and previous handbooks. The first
draft of this list was reviewed by representatives of this Air Force mission. How-
ever, it is possible that the list is not complete, or that another individual from the
same organization would have described or categorized the software types
differently. The number that follows each software function is the assigned
software category. This software category is 1 of 18 standard categories defined in
section 2.3.2 and it is used in path I to determine candidate methodology selec-
tion.

1. Threat Systems defensive and offensive radar, targeting/tracking systems,
electronic countermeasures.

SOFTWARE FUNCTIONS CATEGORY

controls and displays 14
message handling 8
radar range and position calculation 5
radar systems monitoring 10
servo positioning 10
target/threat data interpretation 16
tracking control 3

2. (;mided Weapon Systems -- air-to-air, air-to-ground missiles, smart bombs.

SOFT WARE FUNCTIONS CATEGORY

autopilot 6
built-in-test (BIT) 0
downlink telemetry 16

A-7

..--

electronic counter-countermeasures 10
executive control 4
fusing 2
guidance 3
launcher sequencing 3
mission data preparation 12
navigation 5
tracking and stabilization 3

3. Scoring Systems - proximity detectors for projectiles; used in aerial gunnery
training.

SOFTWARE FUNCTIONS CATEGORY

analog-to-digital conversion 13
front end formatting and filtering 13
graphics 14 -

performance statistics calculation I
telemetry 13
trajectory calculation 5
trajectory calculation algorithms 5

A-8 .. .

APPENDIX B: AVIONICS

The software usage described in this appendix is based on a representative site devoted
largely to this mission. Therefore, the procedures covered in this appendix may not
include all aspects of the avionics mission.

B3. AERONAUTICAL SYSTEMS DIVISION (ASD) -

ASD is a developing agency for weapons systems equipment, including avionics,
automatic test equipment, crew training devices, and flight control and
reconnaissance/C 31 systems. System and software development are typically contracted
out; the development contractors tend to be medium to large size aerospace corpora-
tions, with substantial technical expertise in weapon systems development. The systems
and embedded software are developed under well-defined contractual requirements and
monitored by on-site representatives and frequent reviews of activity and documentation
by ASD personnel. A wide diversity of software is developed by ASD, including .

numerous aircraft avionics and control systems, and communications systems software.

Development activities are controlled by Government standards and testing practices - -

are fairly uniform, adhering to AF regulations and uniformly defined testing require-
ments, imposed by the SOW.

B2. ASD MISSION

The primary mission of Aeronautical System Division (ASD) is to acquire aeronautical
systems that meet the needs of Air Force users such as Strategic Air Command, Tactical
Air Command, Air Training Command, and Air Force Logistics Command to provide J

* maintenance and support systems. Virtually all systems and equipments are developed
, 1k cmtractors, who are also responsible for development (and sometimes maintenance)

Of the computer programs and computer data.

Since there is very little weapon system software developed by ASD personnel, the main
actiites of ASDI) software engineers and software managers are to (1) assist in preparing
the computter resource elements of specifications and requests for proposals, (2) partici-
pcate in ,vnliiatig 11cntractor proposals during the source-selection process, (3) monitor
th, lr,,r,,s and chanae activity during system development, and (4) assess the degree

to which requirements are being satisfied. These software engineers and managers
nt ii 4ra,'t with ,ther engin,,er. and managers involved with the system and report their

-" [indi-, throiigh appropriate ASD internal channels to program management for status,
. ,~ idlir-t:i iulirig, and decisions. In certain programs, Government personnel are assisted .

m" their ta.sks by sul)pmrt contractors commonly called Systems Engineering and Techni-
"'31 .\ ' utance and indhepen(lent verification and validation (IV&V) contractors. IV&V - - 1

[-i l .: ' i i .: 7 ." -? .' -.-.-: --: -i i i - -. ' -' ... • _ . .i i . " ..~ i i i - _ ... -' ..- -: -.' : ? . -. i --" ..i -" ' .5 ' iG: '

Ir-" ".: ". :' ;-: ",., "," . -"..: ; :.. i. .] , ''.:- " , "," "; ." : .: ,"- "''- ",' .' " '- ' " '"::""-""''-"I" "

contractors are usually focused on software issues, while SETA contractors have a
broader scope with software as one of the elements within that scope.

B3. SOFTWARE DEVELOPMENT ENVIRONMENT

This appendix covers five major types of weapon system software developed at ASD,
including the development and mission support software associated with each type. -.
These five types are categorized for convenience as avionics; automatic test equipment;
air crew training device (ATD); flight control; reconnaissance; and command, control,
communications, and intelligence (C31). The software developed by the ASD contractors
is highly varied from category to category. Furthermore, the software within each
category is far from homogeneous in its nature.

Avionics Software at ASD (Overview). Avionics software usually encompasses the
software aboard aircraft, airborne strategic missiles, and some air-to ground missiles
acquired by ASD. Aircraft avionics operational flight programs (OFP) are generally
divided into two categories: (1) offensive avionics, including such functions as naviga-
tion; air data computation; weapons management; sensor data reduction and controls;
stores management; target recognition and designation; cockpit controls and displays
terrain avoidance; terrain following; computer executive functions; and communicat.ons;
and (2) defensive avionics, including electronic threat detection; threat discrimination;
threat avoidance; a variety of jamming techniques, controls, displays; and computer exe-
cutive functions. The specific set of avionics functions depends on the nature of the air-
craft (air-to-air fighter, air-to-ground fighter, multirole fighter, fighter bomber, strategic
bomber, cargo, tanker, reconnaissance, or trainer) and the specific requirements for that
aircraft.

On board automated built-in-test functions or central integrated test systems are used
to determine hardware and system failures, to notify air crews for assessment of the
effect on mission performance, and to notify ground crews for maintenance actions.
These software functions may or may not be considered part of the avionics, depending
on individual perspectives with ASD.

Detailed information regarding avionics software is contained in the following para-
graphs.

a. lequirements. The software functional and performance requirements are gen-
erally derived by contractors from avionics system requirements of the same type.
In addition, the Air Force may specify certain software design requirements that
may change over the years, depending on the advancement of technologies.

,Generally, modern avionics software and firmware are distributed among special-
ptrpose computers of the "minicomputer" class and among microprocessors.

B-2

., .

.. ,~ 5 Yrr r v . & ;.- -- "

Communication among processors is usually according to the protocol defined for
serial multiplex buses in MIL-STD-1553B. The OFP is a real-time program usu-
ally operating under an executive concept of rigorously scheduled function execu-
tion in the foreground activities for each mode of the mission. The scheduling
timeframe for foreground is a part of the design of the software, based on how fre-
quently the required data are updated to achieve mission performance. Less criti-
cal functions operate in the background and are usually scheduled on a time-
available basis, with higher priority activities interrupting those of lower priority.
This rigorous scheduling is imposed to simplify the design concept and to ensure
repeatability during software and system test so that transient anomalies are
minimized.

b. Language. Until the B-1 program and the F-16 program, avionics software was
exclusively programmed in assembly language. With the successful use of the
JOVIAL language on the above two programs, the Air Force standardized on the
JOVLX-L J73 language (according to MIL-STD-1589B) for all avionics applications
(unless an approved waiver based on technical or cost issues is granted). Offensive
avionics software using JOVIAL usually has about 80% of the object code gen-
erated from JOVIAL source code with the remander in assembly code.
Input/output functions (not supported by JOVIAL) are relegated to assembly
code. With this 80/20 mix, the JOVIAL expansion of code and timing is
estimated at 15'0 over that of well-done assembly code.

c. Size. The size of avionics OFP's varies considerably with application. For sim-
ple fighter aircraft, the OFP may be less than 3,000 instructions; whereas for a
strategic bomber the total OFP size may be 100 times greater. As the functional
requirements increase, so do the sizes of the OFP and its data tables. The Air
Force usually requires a margin on sizing, timing, and communications throughput
to provide for future modification and growth of the avionics suite. These margins
may be initially specified in the range of 15% to 50% of total capacity, but the
tendency has been for software growth to use a significant amount of this margin
before development is complete.

d. Development facilities. Typically, avionics software is developed on a general-
lpurpose host (13M 370, VAX 11/780, etc.) in JOVIAL and initially targeted for
the hlost. After error-free compilation of units, some minor checkout takes place
on the host. Units are than recompiled on the host and targeted for the flight
-,)111put ,r. somw unit and m(odule testing is done through an instruction-level
• i11 r 1on in (,r interpretive computer simulation on the host, but this is usually

iminital because of long running time and slow turnaround. A software develop-
ment laboratory (SI)IL) is used for module and computer program component
chckout and integration. This laboratory simulates (usually on Harris type or
VAX onpuiit ers) other systenm hardware elements and drives the software in real
Sroe (,n h readl>< :ar(I processors. lach processor in the distributed system is at first .. "

(ri in ",standa,)ne" to test the software in that one computer.
-,I

. ,

2 - .. P.• -.

9 ".

." -. " " .: : " .', . ' ; " i,. ,. ';,i.+i~ i. , .""., : ,; .. - - .J

A more extensive facility, the System Integration Laboratory and Test Facility
(SILTF) is used by the software development team to integrate the various corn-

puter elements so that the distributed system may be exercised with as much real
equipment (rather than simulated equipment) as is economical. After this phase,
the software is handed over to a separate test team (within the same company),
which conducts tests on the SILTF according to rigorous test plans and procedures
developed by the contractor and reviewed by the Air Force. Digital and graphic
data are recorded to verify correct functional performance against the verification
cross-reference matrix contained in section 4.0 of the CPCI development
specifications. Software problem reports or discrepancy reports are written by the
software development team, and corrections prepared and periodically incor-
porated through contractor configuration control procedures. Retest is accom-
plished after corrections are implemented.

Test Equipment Software (Overview). There are three generic types of automatic
test equipment that are procured by ASD for aircraft: flightline test equipment, inter-
mediate shop test equipment, and depot test equipment. The purpose of the flightline
ATE is to heck out aircraft systems to isolate faultly black boxes, or line replaceable
units (LRUs). The intermediate shop test equipment designed for combat bases uses
ATE to isolate faults in LRUs to specific electronic cards, or shop replaceable units
(SRUs), which are then replaced. SRUs are either discarded or sent to one of five U.S.
depots where the third type of ATE isolates the faulty components on the cards, which
are then repaired and returned to inventory.

Detailed information follows regarding test equipment software.

a. Software categories. There are usually four categories of software that are part of

the ATE software: (1) the operating system, which is usually provided by the ven-
dor of the computer (often a commercially available machine); (2) the support
software, which includes compilers or interpreters, assemblers, linkers, and loader
(often commercially available); (3) control software, which controls the various
electronic devices (signal generators and the like) that are part of the tester; and
(.4) unit-under-test (UUT) software, which activates in sequence the control
software and measures the appropriate response of the UUT for that test condi-
tion. The UUT software also identifies the faulty elements of the UUT. The two
most modern ATE developments are those for the F-16 aircraft and the Modular
Automatic Fest Equipment (MATE) program.

b. Language. The ATE software (for the first three categories above) is usually writ-
ten in assembly language and FORTRAN, with the UJUT software usually written
in some version of ATLAS. The current Air Force standards are IEEE Standard
C/ATLAS 716-1082 and 717-1982. The MATE program is an effort to standardize
on ATE interfaces for future equipments. MATE is examining the use of JOVIAL
J73 rather than FORTRAN for future ATE software and is advocating the use of

B-4

....... .

the above IEEE standards for ATLAS.

c. Development process. The requirements process usually starts with a Test
Requirements Document (TRD) for the equipments to be tested by ATE. The
TRDs are usually prepared by the designers or manufacturers of the units. From
the TRDs and previous experience, a weapon system contractor or an ATE con-
tractor derives or selects the test station requirements, which include the operating
system and control software requirements. From the TRDs and detailed documen-
tation on the UUTs and test stations, the specifications for UUT software are
derived. In more recent systems, these documents have been reviewed by IV&V
contractors, which the SPOs have indicated to be beneficial and cost-effective.

d. Testing. For economic reasons, the tests to be implemented in ATE software can
never be totally exhaustive. There are many failure modes possible to a UUT,
either singly or in combination; consequently, those that constitute a high percen-
tage (90% to 95%) of all failures are implemented in the UUT software.

It is not economical to test every fault isolation option in UUT software on actual
test hardware. Since the fault itself must be inserted into the UUT to conduct the
test (this may be difficult to do without inserting multiple faults) and since the
number of test units available may be limited, UUT software testing usually is
slow and expensive. Usually for tests witnessed by the Air Force, 50 to 100
different tests are run on the software against a single, actual UUT. Remaining
errors, problems, or needed test programs are resolved during the software mainte-
nance activity, with some economic justification.

e. Special requirements. Fault tolerance is seldom a requirement for ATE software.
If there is a software fault in the tester or the UUT, the philosophy has been that
the fault should be repaired rather than provide software to work around that

" fault. Self-test is usually provided in the test station so that test station hardware
failures may be isolated and repaired quickly to bring the test station back on line.

f. Development environment. Modern systems normally compile, interpret, and
assemble on the test computer. An exception to this is the F-15 intermediate shop
test equipment system, which compiles the UUT software on an IBM 360. This
approach is now deemed to be less efficient. Much of the debugging is done on the
tester itself with a real hardware UUT in place, turn-around through a separate
host takes too long, and the minicomputer in the test set has the capacity to do
the hosting job.

Neither environmental simulators nor simulations of the UUT are used. The first
is not needed and the second is not considered effective. Writing and debugging
the simulation of the UUT is considered more expensive than the present methods

that use the actual UUT hardware.

B-L-

.... ,- --. . ,"

- . -;-L, -.. " 7 .. Y 7

Simulator Software (Overview). ASD acquires a variety of automated crew training
devices, ranging from simple part-task trainers, which provide a training element that
may be as short as 8 to 10 minutes duration, through full weapon system trainers, which
may simulate an 8 to 10 hour mission for an entire strategic bomber crew, including
pilot, copilot, navigator, flight engineer, and electronics warfare officer. For pilot train-
ing, these air crew training devices present all of the cockpit instruments and displays,
pilot controls, window and heads-up displays, motion effects, aural cues and effects, real-
istic aerodynamic response for the simulated aircraft, engine responses, vibration, and
avionics equipment behavior, including sensor behavior and weapon release.

a. Virtually all of the functions are simulated in software on one or multiple commer-
cially available 32-bit minicomputers. In a recent system (F-16), a copy of the air-
craft avionics computer with its flight software has been included in the simulator
itself, rather than simulating the flight programs on a general-purpose computer.
Commercially available operating system software, peripheral devices (tapes, disks,
printers, CRTs, etc.) and their control software are generally used. Applications
programs that simulate the aircraft function and perform much of the instructor
station operation are specified to be written in FORTRAN.

b. Software characteristics. The fundamental control philosophy for simulator
software design is a prescheduled, synchronous timeframe for those highly cyclic
aircraft activities with other lower priority activities running in the background on
an interruptible basis. Modularity (one function per module), top-down design,
and separation of data from program instructions are usually requirements on the
software effort. The software generally checks the ranges and validity of
instructor-supplied parameters and provides fault data for maintenance purposes.

c. Specifications. Usually the entire ATD is a single configuration item of which the
software is an element. The system specification for the ATD indicates the func-
tions to be represented in the system, the general level of fidelity, the required
margins for computational speed, bus throughput, directly addressable memory,
and bulk memory (usually disk).

d. Testing. The fundamental adequacy of the software and simulator performance is
judged through formal tests in which experienced pilots aircraft. Other elements
of the system, such as the instructor station capabilities, are verified by objective
tests.

Flight controls (Overview). Digital flight controls and digital engine controls
represent relatively new areas of computer application at ASD. Both involve the pri-
mary issues of high performance and flight safety. Whereas the computer resource
activity for the three applications previously discussed have had at least 10 to 15 years
of history and evolution at ASD, these control applications are relatively new and are
not yet implemented in an aircraft scheduled for production.

13-6
i!J.

a. Language. Development of flight control software has to date been in assembly
language but will no doubt be done in HOL in the future as mature compilers
become available. The general development and test procedures are similar to
those for avionics software.

b. Software characteristics. The control law implementation for multiaxis stability
and aircraft control are highly algorithmic in nature with different algorithms and
different control gains for different flight modes or regimes. The software is writ-
ten against prescheduled time increments so that periodic data updates and con-
trol computations are completed at a cyclic frequency to maintain an adequate
margin for stability and control. Less important functions are scheduled in the
background, some of which may be triggered on an event rather than on a cyclic
basis.

The preparation of flight control software requires a thorough understanding of
the hardware implementation, both in its failed states and its unfailed states, as
well as an understanding of control theory. The testing of this software is compli-
cated by the requirement to test the system both in its nominal state and in its
large number of failure combinations.

c. Testing. ASD/ENF is currently determining what will be necessary in the
software requirements and test area for safety qualification. The character of
flight control software can be generally ascertained by a review of the advanced
fighter technology integration (AFTI) programs being pursued by the Flight
Dynamics Laboratory in the Air Force Wright Aeronautical Laboratories.

d. Special requirements. In general, the sensor and computational hardware will be
. ~ triple or quadruple redundant so that failure of one or two processors would not

jeopardize flight safety. Sensor data will be cross-strapped among the processors
so that each can operate on the full set of sensor data with identical software.
Comparison of input data from similar sensors will be used to isolate failed sensor
strings. Comparison of output data will be used to identify failed processor ele-

b-.',. - .

ments. The fault-tolerance requirement (hardware fault detection and isolation) is
a key requirement and adds considerable complexity, particularly if battle damage
causes aerodynamic and control surface changes.

Overview of Reconnaissance and C3 1. ASD is responsible for the acquisition of
ground systems that receive (from aircraft sensors) data regarding the ground threat
environment. These data, such as radar digital maps or ground electronic emissions
information, are processed to determine the nature and location of various threats.
Upon threat identification and location (during a real battle), the ground computational
system, in conjunction with human controllers, may (1) plan an action against some of
the threats, (2) allocate weapon and aircraft resources, and (3) control the flightpath of
the aircraft and/or its weapons to the vicinity of the selected targets.

B-7

% -, . ' : _ - . * _%- -- - --

a. Hardware. These systems may be implemented in commercially available or mili-
tarized versions of commercial computers. These are usually of the mini or super
minicomputer class with special-purpose, high throughput processors for signal
processing and distributed, tightly coupled parallel processors for the remainder of
the processing.

b. Software. FORTRAN and assembly are usually the languages used for the appli-

cation software that is structured and modular. The development is usually on
the minicomputers used for the project, and the testing procedures parallel those
used in the SILTF.

Future flight control software will interact with the avionics software (1) to
achieve automated delivery of weapons and (2) to use avionics sensors. A key
requirement on this type of software will be that errors in the avionics system
shall not propagate into the flight control software. This may be a difficult
requirement to validate.

B4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys per-
formed as part of the preparation of this handbook. The first draft of this list was
reviewed by representatives of this Air Force mission. However, it is possible that the
list is not complete, or that another individual from the same organization would have
described or categorized the softwaire types differently.

The number that follows each software function is the assigned software category. This
software category is I of 18 standard categories defined in section 2.3.2 and is used in
path 1 to determine candidate methodology selection.

A. Airborne Systems

1. Avionics Systems

a. Mission Avionics

S()FTWAIRE FV'NCTIONS CATEGORY

aerial delivery 3
automatic approach/landing 4
communication 10
cont rol/display processing 14
data bus control 2

.,, ,- .-, L.. Z" .- - " " . , . " .. . - ' • .. . ' " : " ' .: ' "' : :
I... ,7 -.." -i. .--' -. . i- i i " -" "- -: : : • .- -"-7: ', ':- : 'i - .7 -"' -,- 'i. -' "-- i- " ., -'- -:- ',2, -i. ...,.C

* *. - - * -r -,.. . "-' . * : + :''" + +..." " " +'+ + + i: * 'i

-V.

4," navigation/guidance 5 Ireal time executive 2 :-+

self-test 9
sensor control 3
sensor data reduction 10 .1
sensor test/credibility 10
terrain following/avoidance 2,16

b. Offensive Avionics

SOFTWARE FUNCTIONS CATEGORY

stores management 1
target recognition/acquisition 16
weapons control 3

c. Defensive Avionics

SOFTWARE FUNCTIONS CATEGORY

jamming 10
threat avoidance 2
threat detection 10
threat discrimination 16

... 2. Flight Critical Systems

a. Flight Control

SOFTWA E FUNCTIONS CATEGORY
.igital flight control 3

,sf4nsor data processing 10

U. .
B-.9|.

b. Fuel Management

SOFTWARE FUNCTIONS CATEGORY

fuel management 2

c. Engine Control

SOFTWARE FUNCTIONS CATEGORY

digital engine control 3
engine cycle data acquisition 13
fault detection and accommodation 2,9

B. Ground Systems

1. Air Crew Training Devices

SOFTWARE FUNCTIONS CATEGORY

'.'-- aural system 3
,- computation system (executive, support, 1,4

- '-. maintenance software)
digital radar land mass system 3
electronic warfare system 3
electro-optical viewing system 3
gravity seat systems 3
instructor/operator station 14
motion systems 3
student station 2
visual system 14

2. Automatic Test Equipment

SOFTWARE FUNCTIONS CATEGORY

control software 2
system software (compilers, support) 17
unit under test (UUT) software 9

B-10

[..- _ -:.:.:

-. - - -. -~ . .* ...

APPENDIX C: COMMAND, CONTROL, COMMUNICATIONS, AND INTELLIGENCE

The software usage described in this appendix is based on a representative site devoted
largely to this mission. Therefore, the procedures covered in this appendix may not
include all aspects of the command and control mission.

CI. STRATEGIC AIR COMMAND

The Strategic Air Command (SAC) has a diversity of missions to support, such as com-
mand and control, war planning, intelligence support, and strategic weapons support. It
also develops a wide diversity of unrelated systems for these missions. For strategic
weaponry, SAC is a user agency, while for other areas it is both a developer and user.
War planning and intelligence systems are developed and maintained almost exclusively
by Air Force personnel, while often the development of information and mangement sys-
tems are primarily conducted by contractors with the maintenance shared by Air Force
and contractor personnel. The software developed for the warning functions ranges
from highly critical to noncritical. Software development practices for contractors are
controlled by the SOW; internal maintenance is conducted in accordance with SAC
regulations. SAC computation systems tend to be data base and data processing inten-
sive, such as in the intelligence and war planning areas. The warning area includes
real-time control functions, and the command centers use C3I technology software.
SAC-conducted software testing practices and methods are standardized by SAC regula-
tions; however, there exists variability in their application, corresponding to the
differences in the software categories, criticality, and functional organizational practices.

C2. SAC MISSIONS

The missions performed by SAC include command and control, war planning, warning
and intelligence support. The general functions performed within these missions are as
follows.

Automated command control:

a. Collection of status-of-forces information on a near-real-time basis, using general-
ized informat ion on a near-re.d-time basis and a generalized software system called
the Force Management Information System.

b. All geographically (lispersed SAC subordinate units are linked to headquarters
computers via a Data Transmission Subsystem.

c. ('ommand Post wall screen and printer displays provide data to the Commander-
in-Chief Strategic Air Command CINCSAC) and the Battle Staff concerning avai- "
lability of resources for Single Integrated Operational Plan (SLOP) execution.

C. I

N . - *. - .-- . .

-7

Progress of force activity can be monitored as events materialize.

d. Support is provided to the Single Tanker Missions for worldwide Tactical Air
Command (TAC) aircraft deployments.

e. Support is provided to the SAC aircraft contingency planning staff. j
f. Software development support is provided for Numbered Air Force control Sys-

tens.

g. Software development support is provided for Airborne Command Post Force con- j
-S,':...trol Systems.

War planning:

a. Planning of intercontinental ballistic missiles (ICBM), aircraft, and cruise missile
sorties against specified enemy targets is accomplished using intelligence estimates,
weapons capabilities, and geological factors.

b. Computer simulations permit "flying" sorties to determine success probability.

c. Extensive use of interactive graphics permit SAC and JSTPS planners to visualize
SlOP development.

d. Production of flight plan cassettes for unmanned cruise missiles.

C. Gaming techniques provide information on methods to improve the plan by pitting
the SlOP against the probable enemy plan.

Warning:

a. Computers embedded in various missile warning field sensors enable the detection
and/or tracking of hostile missile launches. .

b Near-real-time displays on several display devices notify Command Post personnel
Of endangered SAC resources and provide information needed for decisions of force
posturing, including launch for survival of aircraft.

c. An automated countdown to impact and checklists of required actions greatly
assist the decisionmaking process.

Intelligence support:

C-2
, ., o..--, °

a. Online interactive analyst support is provided for collection management, photo-
graphic and electronic intelligence analysis and correlation, target development for
the National Target Base and maintenance of offensive and defensive orders-of-
battle on the SAC On-Line Analysis and Retrieval System (SOLARS).

b. Automated processing of electronic intelligence (ELINT) is accomplished to sup-
port the airborne reconnaissance program.

c. Development of processing systems provide for SC evaluation of airborne recon-
naissance collectors.

d. Use of graphic displays supports processing of scientific and technical data describ-
ing electronic emitter characteristics.

e. Map overlay plotting is used to support STOP and ELINT production.

f. Automated support to reprogrammable airborne electronic warfare systems is pro-
vided.

g. Communications support and online analytical support for operational intelligence
analysts are provided.

Management support:

a. The management information requirements of the HQ SAC staff are supported
with 10 Air Force standard and 39 command-unique Management Information
Data Systems.

b. lemote terminals in te Headquarters building permit online support.

c. Computer output microfiche (COM) capability is available, as well as the
loneywell Page Printing System.

d. Liaison is maintained with the Air Force Data Systems Design Center, manpower
and Personnel Center, Accounting and Finance Center, and other MAJCOMs.

C3. ('.VFI'(;()IlZA'ION OF SOFTWARE FUNCTIONS

Th lit of software function in this appendix is based on responses to surveys performed
Ls part of software test handbook preparation, updated by a later survey during
l)rel)aration of these guidelines. This list has been reviewed by representatives of this
AiForce mission. It is possible, however, that the list is not complete, or that another
inldiii,iil from the same organization would have described or categorized the software
types difllerent ly.

C-3

- . . " .

• , . .

-". - -

The number that follows each software function is the assigned software category. This

software category is 1 of 18 standard categories defined in section 2.3.2 and is used in -

path I to determine candidate methodology selection.

* :" SOFTWARE FUNCTIONS CATEGORY

controls and displays 14
data base management 12

- interactive interface 14

mapping/plotting (graphics) 14 ._

mission data preparation 12,1
i

sensor data processing 10
simulation (non-real-time) 11
simulation (real-time) 11 j
tracking 6,

,!7w

C-4

..

- .q - . - . .. ,

APPENDIX D: SPACE

The software usage described in this appendix is based on a representative site devoted
largely to this mission. Therefore, the procedures covered in this appendix may not
include all aspects of the command and control mission.

DI. SPA('E DVISION

The Space Dvision (SD) is a development agency for space-re!ated systems, including
satellit-,. launch vehicles, and ground control and communications systems. SD relies
extensively on cntractors to develop its systems and embedded software, which also

performs maintenance under follow-on contracts. Software development practices for
contractors are controlled by the SOW; and SD personnel, often coupled with technical
consultant contractors, monitor all development activities at all levels intensively. Fre-
quent reviews and technical direction are provided by this agency. A wide diversity of
software categories is developed by SD, including software for communications, satellite
control systems, prelaunch checkout and ground test systems, space vehicle avionics and
control, and system simulations. This site employs IV&V contractors to a greater

*l " extent than any of the other sites surveyed. Software development practices are esta-
blished by Air Force regulation, defined by SOW, and, as a result, tend to be relatively
uniform among the development contractors. SD places great emphasis on the
thoroughness, sufficiency, and formality of contractor development practices.

D2. SD MISSION

The primary mission of SD is to acquire space-related systen-., which include satellites,

launch vehicles, and ground control and communications systems. Also, SD is responsi-
ble for managing and operating some elements of these acquired systems, such as the
Satellite Control Facility and the Vandenberg Launch Facility. The new Space Com-
mand will impact these operating activities in a way that is yet to be determined.

SI) relies on r,)ntractors to develop its systems, including the software within its sys-

tems. Development contractors for SD usually continue to maintain the software (if
maintenance is required).

3(8,.aus, sv'.ttms and system software are not developed by SD, the main activity of its
p,,r,(,nnil is to prepare RFlPs, evaluate proposals, and conduct software management
, 1 rv,,i~l:nce dring the contract.

T,,chnical assistance in the software area is provided by Aerospace Corporation, a non-
profit s ewtirn fngirneering and technical direction contractor, providing technical consul-
tation to the Air Force. In addition, particular major programs are usually technically
abi,,t(d by I\&V contractors, who are selected competitively on a program-by-program

D-1....

-7

D3. SOFTWARE DEVELOPMENT ENVIRONMENT

This section of the report will present an overview of four major types of SD software;
ground control and communications systems, prelaunch checkout and launch systems,
launch vehicle systems, and space vehicle systems. It will be evident that the software
developed by SD contractors is highly varied in character from category to category.

There is no technical detail concerning SD software that is true for all applications at
this site. Following these overviews, the report will focus primarily on those specific
applications encompassed in the survey.

SD relies on contractors using their own tools to develop and test software. Unlike the
aeronautical systems, space systems rely on development contractors to continue to
maintain the software through its life cycle; furthermore, for certain systems a high
degree of contractor IV&V is provided. The software characteristics within an entire
system and across systems vary substantially.

Ground Control and Communications (Overview). SD has acquired and is
acqtuiring systems and software that (1) control the attitudes and functioning of
unmanned satellites; (2) gather, reduce, record, and display data transmitted by satel-
lites; and (3) communicate and control manned space activities. Some examples of these
sV.tems include the Satellite control Facility (SCF) at Sunnyvale, the Global Positioning
Satellites ground component, and the consolidated Space Operations Center (CSOC) at
Colorado Springs.

These systems have extensive amounts of software with major functions such as satellite -
detection (both enemy and friendly), orbit determination, displays of status to controll-

ers, and satellite attitude correction and communication with one another and remote
sites. In fact, if either the CSOC or the SCF become disabled, they can perform each
)ther's functions (as can the Johnson Space Flight Center).

Most of the software is written in higher order language (JOVIAL and]tAL-S with some
RH()I''AN for (SoC and JOVIAL for SCF) and operates in near-real time. CSOC

*:-i. .,ft ,,,rf is ,,in,,tained by Air Force personnel with substantive contractor support,
while S(TF primarily uses contractor maintenance. These systems are generically similar
to) SI)s r ec(mnaissance and (31 system!s but are larger in scope and more multipurpose.

-- Prelaunch Checkout and Launch System (Overview). A considerable investment
III V,ft r,.sidfes in l)relauich checkout and ground launch systems that perform the
I))),r,-,,r rlr d s:tllii, gr ound checks before and duiring countdown and that perform the
range safety function (uring launch. For new vehicles, the existing facilities are

"4" :iaj~t ed , new software written, and additional factory che'kout equipment moved to the
; .-. launch site. "

The ftre r, Imr's a 1,6taihld u ,ierstand ing of the hardware being checked and the
- .. ,ms full)',,n -' These activities bear a similarity to S)'s automatic test equipment

".". "." °

software, but on a more focused scale since the checkout activity usually is confined to
the contractor's facility and the launch site.

Launch Vehicle Systems (Overview). Software in launch vehicle systems maintains
the stability of the vehicle during its flyout and takes inertial and other sensor informa-
tion in order to follow a preplanned launch trajectory. The software design is based on

rigidly scheduled, cyclic sequence of events much like aircraft avionics software. This
softwae is usually small in program size, often fitting into a 16K-word memory and is
usually written in assembly language.
The development and testing of this software parallels that described for SD's avionics
software, except that it is simpler in function for the vehicles that launch unmanned

payloads.

Space Vehicle Systems (Overview). Space vehicle systems may be classified as
satellites that are manned, such as the Space Shuttle, and unmanned vehicles that are
used for exo-atmospheric transport, such as the inertial upper stage (LUS), and the Mini
Vehicle used in the Antisatellite System.

For the most part, manned satellites do not use digital computers, aside from some
recent systenis that have small processors for attitude sensing and pointing and other
station-keeping responsibilities. More use of digital computers in future satellites is
expectel, with emphasis for these computers on low power and fault-tolerant design.

S'The Space Shuttle has substantial onboard software, but this effort was primarily a
" NASA effort and beyond the scope of this study.

'xo-a:tniospheric transport vehicles again are very similar to launch vehicles in their
softa:ire natures, with the exception of the additional feature of engine control, more

* ,,\tesive, mane'. ering, and payload dispensing. Again, like aircraft avionics, simulation
t;ing a hot wnuch (SllTF-like facility) is performed during the design and testing to I
.l ilish th, r,,al-tire performance.

i ,re extensive IVKV is performed on these systems than on SD system. This

I\A ui:vdly ilids independent testing on separate facilities, using separate tools by
I\,AN (ont ralors. ,.

1) t. ('.TV'l;(()IIZ\TION OF SOFTWARE FUNCTIONS

The' 11-t J soft ware functions in this appendix is based on responses to surveys per-
f,,ri,,,l :.5 part ,,f software test handbook preparation, updated by a later survey during
.pra.p:rtin o)f these guielines. This list has been reviewed by representatives of this

.- . \ir I i eir s oin. It is possible, however, that the list is not complete, or that another
.-. n il i ,1,al fr,,i the, saiw organization would have described or categorized the software

t w d ,dT,rent v%.

D-3

-4

-".- . . " .'

The number that follows each software function is the assigned software category. This
software category is 1 of 18 standard categories defined in section 2.3.2 and is used in
path I to determine candidate methodology selection.

A. Equipment Checkout -- pre-launch checkout, equipment self-test

SOFTWARE FUNCTIONS CATEGORY

automatic test equipment (ATE) 9
built-in-test (BIT) 9
central integrated test systems 9

B. Aerospace Defense -- threat detection and warning, threat evaluation
--2 7-- ,4

SOFTWARE FUNCTIONS CATEGORY

automatic processing 13
data base management 12
filtering and smoothing 9
guidance and control 3
message processing 8
mission data preparation 12
mission planning 15
real-time control 2
real-time executive 2
satellite impact prediction 5,7
satellite tracking 5
sensor processing 10

. (sensor) tracking 5
simulation 11
situation notification 14
space information correlation I
space situation analysis 15
task selection and displays 14

D-4

owl,

;P:. . .

APPENDIX E: MISSION/FORCE MANAGEMENT

The software usage described in this appendix is based on a representative site devoted
largely to this mission. Therefore, the procedures covered in this appendix may not
include all aspects of the command and control mission.

EI. TACTICAL AIR COMMAND

The Tactical Air Command (TAC) is the development and user agency for the major.'
* Air Force tactical planning system, Computer Assisted Air Force Management System N

(CAFMIS). The CAFMS is a single-function, highly interrelated automated processing
system. The major output product of CAFMS is the air tasking order report. CAFMS L

* was developed by TAC personnel with some contractor assistance during the early
requirements and design phases. Management, development, and maintenance of this
system are well defined and uniquely adapted for its ongoing support. The system is
currently operational, but undergoes continual enhancements and incorporation of new
capabilities. The overall function of the CAFMS is quite critical, but few of its software
components are considered to be more than moderately critical. The system does incor-
porate some automated fallback provisions in case of failure, but redundancy of systems
function is not provided and reversion to manual operation is the ultimate fallback pro-
vision. Testing practices are well defined and are incorporated as an integral part of a
version release management system developed by TAC specifically for CAFsitn. Testing
is applied uniformly to all software components undergoing development, to the
differences in the software categories, criticality, and functional organizational practices.

E2. TAC MISSIONS

The Tactical Air Command operates the Tactical Air Control Centers (TACC). The
mission of TACC is to prepare, issue, and monitor the execution of coordinated orders
for the emnployment of all forces available to the Air Force Component Commander.
The TACC is the operation center of the Tactical Air Control System (TACS). The
fAnIS as developed to augment the TAnS with automated information processing,
stor.ge, and pisplay capabilities, and secure digital communications capabilities.

The primary mission area applicable to the TAC is Mission/Force Management. An
applicable secondary mission area sbecause the Mission/Force Management func-
tioffs are integrated into an communicates through a communications network.

E3. SOFTWAC ' I M'LOIONINT ENVIRONMENT

The section roN(l(s a summary of CAFMS and its software development environment.
miss lion no other tacticpal sstems involving significant software development or
in itei nce that were applicable to the survey. All elements or CAFmnS are developed,
progr(Ainio andd l controlled an the same manner and within the same organizational

E-1

t-r*,a dd pa.p b.ie andsec redigta c m u ia on

q'h, rimrymisio aeaappicbletoth TA i Mssin/orc Mnaemet.Ani- :-:-
apliab, ecndrymisin re i CIbcaseth MssonFoceMaagme un-' L'S L-13L '7

structure. The CAFMS is essentially a heterogeneous system in this respect. All code is
implemented and tested according to the same standards and procedures. Therefore,
the CAFMS was the only system surveyed for TAC. It is discussed as a single entity in
this report, although in actuality it comprises a number of individual but interrelated
computer programs. Each of these programs is developed by a uniform and disciplined
management process.

Virtually all software effort on CAFMS is considered to be new development, as opposed
to maintenance of existing program elements. This development effort involves aug-
menting the existing system with additional functions and integrating them into the
overall design. It also involves major revisions to the system performance parameters,
such as the data base contents, to enhance the system or to accommodate new func-
tions. In this manner, the CAFMS is undergoing an evolutionary development process
to meet current tactical planning demands and also to adapt it to changes in its opera-
tional environment. All changes are accomplished in a phased approach.

Development of CAFMS requirements was shared about equally between Air Force per- 2
sonnel and a supporting contractor. Design and development through initial installation
were accomplished mainly by the Air Force, with only about 10% done under contract.
Subsequent development and maintenance are entirely the responsibility of TAC. The
system is currently undergoing initial operational test and evaluation. j
Criticalitv factors for CAFMS include major mission impact, which probably is
representative of Air Force mission/force management systems. The confidence level
(see table 13-1 in appendix B, for explanation) that applies to software development and
testing is level 2. Therefore, the development disciplines and level of software error
detect ion are comparable to many of the other major Air Force weapon systems, such as
command and control and avionics systems.

CAFMS Overview. CAFMS is designed primarily to build, disseminate, and monitor
the execution of the Air Tasking Order (ATO). There is also a requirement to build and
generate a variety of status reports and periodic and end-of-day summaries. CAFMS
reduces ATO preparation time. Since TACC is mobile, CAFMS must be capable of lim-
ited deployment. Therefore, there must be some ability to identify and change the
nams, locations, etc., of subelements in the data base. Also, CAFMS must be capable
,f processing classified information up to and including SECRET. CAFMS provides an
autorated assist to the manual system for some of its key functions. The main operat-
ing r(,ntrs are the 9th Air Force, and the USAF Tactical Air Warfare Center. CAFMS ,.
is intente to rulfill the following requirements.

a Increase capacity and accuracy in the display of air situation and mission progress ,'
data.

E-2

. .Z.

b. Maintain status of bases and forces.

c. Significantly decrease the time required for preparation and dissemination of the
ATO.

d. Significantly decrease the time used in routine and clerical tasks associated with

mission planning. -

e. Automatically generate and disseminate status and summary reports.

f. Provide terminals at the Control and Operations Centers, Air Support Operations
Centers, Wing Operations Centers, and TACC.

. g. Maintain status of communications, weather, munitions, etc.

h. Provide an offline AUTODIN interface from the TACC to any AUTODIN user,
through the 470L System, TACS Communication System.

System Description. CAFMS has the following six major system functions:

a. Startup. The startup function initializes all other system functions during initial
startup or during recovery. This initialization includes establishment of the sys-
tem environment; for example, communications assignments for participating
units, message alert routing, display access authorization, and system access
authorization. The data base is initialized either to start clean or, if after a
recovery, to start at the last saved position. Communications initialization facili-
tates hookup of all remote terminals and other communications links.

b. Console. At "FACC, the console functions include the ability to build, update, and
disseminate the ATO. It also includes the automatic building of mission schedule
files to be used by current operations and report generation for each day's activi-
ties. Console functions common to both the remote terminals and the TACC
include log-in to gain access to the system, display printing capability, review of
the ATO, update and delete capabilities for mission schedule and other files, input

validation, and the (display function itself.

V. C'ommuln icat ions. (!AFNIS communicat ions function provides the interface f
)etween the TACC and external elements not equipped with a remote terminal.

This offline capability allows dissemination of messages (primarily ATO) through
AVTOI)N or the TA('S internal teletypewriter (rrY) network.

* d. System environnient deinition. This function provides the capability to maintain
an(l change or update the system environment as necessary. This includes a capa-
)ility to receive a printed listing of any specified system environmental data (e.g.,

E-3.

....-....-..-...-....-.-.-.-.. .-... ,-.,•-.-.... ,

J

message routing table).

e. Message processing. The message processing function provides the capability to
prepare the JINTACCS ATO display formats for transmission to addressees not
possessing a remote terminal. This conversion process or reformatting includes the
insertion of header and trailer information. When the message has been format- z
ted, it is stored in a message file and later output to the offline paper tape punch.

f. Shutdown. The shutdown function provides the capability for either an orderly
termination of all computer system functions or, if necessary, an emergency termi-

,. nation. An orderly shutdown includes notification to all consoles and remote ter-
minals that shutdown has started. All messages queued to the paper tape punch
are completed. The system environment and necessary data base information are
saved, as well as any recording information being generated. In accordance with
appropriate security directives, memory and disk are overwritten. In the case of
an emergency shutdown, only the memory and disk overwrite function are accom-
plished.

System Data Characteristics. For in-garrison operations, external data inputs are
received by voice communications to the TACC. These data are manually entered into
the system through local consoles. In deployed operations, inputs are provided through
the remote terminals and/or voice communications. Functional user data inputs are as
follows:

* Aircraft/Aircrew Status

* Munitions Status

* Weather Status

o Unit/Base status

* Air/Ground Situations

9 C'ommunications Link Status

T"he data outputs provided by CAFMS are the ATO message, Mission Schedule displays,
and Status/Report displays. The following displays are available in CAFMS:

e Air Tasking Order

A A

T ..- - ,,.

-:,-',,-~~~~~~~~~~~~~~~~ ~~~.. -'.-.•-...-...... ,-.- . - .. •- • -- ,. -. '.-.-"

e Mission schedule Displays

e eFighter/FAC/Support/Other

* Reconnaissance

* Status/Report Displays

* Unit/Base Status

* Aircraft/Aircrew Status

- Weather Status

. Aircraft Losses

* Unit Air Sortie Recap

" Mission Air Sortie Recap

* Communication Circuits Status

- Strike packages

Standards and Documentation. The major regulations applicable to CAFMS
software development are the AFR 300 series and AFR 800-14, and DoD 7935.1-S,
Automated Data Systems Documentation Standard. Applicable computer program
documentation includes the following items:

. System specification

e Computer program design specification

* (onfigiiration management plan

I)ata base specification

, Operator's manual

* U ser's manual

SE-5

* ., .

* Functional description .4

* Development test plan (one per module)

Programming standards and conventions identified for CAFMS provide coverage for
top-down structured development (analysis, design, and process), coding standards and
testing requirements (module, subsystem, and system testing).

E4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys per- Li
formed as part of software test handbook preparation, updated by a later survey during
preparation of these guidelines. This list has been reviewed by representatives of this
Air Force mission. It is possible, however, that the list is not complete, or that another
individual from the same organization would have described or categorized the software
types differently.

The number that follows each software function is the assigned software category. This
software category is 1 of 18 standard categories defined in section 2.3.2 and is used in
path I to determine candidate methodology selection.

SOFTWARE FUNCTIONS CATEGORY

communication 10
controls and displays 14
data base management 12
mapping/plotting (graphics) 14

, message processing 8
secure data processing 12,8,4
war planning 15

r

F.-A

iF,

:~~....., .. ., , . , . .- ,. =

. , . - : - . ., . - -. . ., .-. , - .- : i . --,

APPENDIX F: MISSILES

The software usage described in this appendix is based on a representative site devoted
- largely to this mission. Therefore, the procedures covered in this appendix may not

include all aspects of the command and control mission.
7 ,"

Fl. BALLISTIC MISSILE OFFICE

The Ballistic Missile Office (BMO) is the responsible agency for ballistic missile systems,
including launch vehicles, and ground control and communications systems. BMO relies
extensively on contractors to develop its systems and embedded software, which also
performs maintenance under follow-on contracts. Software development practices for
contractors are controlled by the SOW; and BMO personnel, often coupled with techni-
cal consultant contractors, monitor all development activities at all levels intensively.
Frequent reviews and technical direction are provided by this agency. A wide diversity
of software categories is developed by BMO, including software for communications,
missile control systems, prelaunch checkout and ground test systems, missile vehicle
avionics and control, and system simulations. This site employs IV&V contractors to a
great extent. Software development practices are established by Air Force regulation,
defined by SOW, and, as a result, tend to be relatively uniform among the development
contractors. BMO places great emphasis on the thoroughness, sufficiency, and formality
of contractor development practices.

F2. BMO MISSION

The primary mission of BMO is to acquire ballistic missile-related systems, which
inchlude missiles, missile launch vehicles, and ground control and communications sys-
tems. Also. BMO is responsible for managing and operating some elements of these
acquired systems, such as the Satellite Control Facility and the Vandenberg Launch
Facility. The new BMO will impact these operating activities in a way that is yet to be
dterininvd.

DI() rviie-, on contractors to develop its systems, including the software within its sys-
.. tfer l),velopment contractors for BMO usually continue to maintain the software (if

rim:intenanee is required).

[~ .'"I'h' I'.lTS an(d syst rm software are not developed by BMO, the main activity of
it-, ,r.rmneirl Is to prepare "'Ps, evaluate proposals, and conduct software management
surxvillinc- during the contract.

T,,,hninil :t,-I'tance in the software area is provided by non-profit systems engineering
:nI t,,,hni,'ml dIirection contractors, providing technical consultation to the Air Force.

- lin :Id,lti n, particular major programs are usually technically assisted by IV&V contrac-
t, r, h, :re, rp.l ted competitively on a program-by-program basis. L

F-I

-. C 4- 4 C

F3. SOFTWARE DEVELOPMENT ENVIRONMENT j
This section of the report will present an overview of four major types of BMO
software; ground control systems, prelaunch checkout systems, launch vehicle systems,
and missile systems. It will be evident that the software developed by BMO contractors
is highly varied in character from category to category. There is no technical detail con-
cerning BMO software that is true for all applications at this site. Following these over-
views, the report will focus primarily on those specific applications encompassed in the
survey.

BMO relies on contractors using their own tools to develop and test software. Unlike
the aeronautical systems, missile systems rely on development contractors to continue to
maintain the software through its life cycle; furthermore, for certain systems a high

degree of contractor IV&V is provided. The software characteristics within an entire
system and across systems vary substantially.

Ground Control Systems (Overview). BMO has acquired and is acquiring systems
and software that control manned missile activities.

These systems have extensive amounts of software with major functions such as threat
detection, navigation and guidance, displays of status to controllers, and course correc-
tion and abort from remote sites.

Most of the software is written in higher order language (JOVIAL and HAL-S with some
FORTRAN and JOVIAL) and operates in near-real time. Some software is maintained
by Air Force personnel with substantive contractor support, while the remainder uses
contractor maintenance.

Prelaunch Checkout Systems (Overview). A considerable investment in software
resides in prelaunch checkout and ground launch systems that perform the missile
ground checks before and during countdown and that perform the range safety function
during launch. For new vehicles, the existing facilities are adapted, new software writ-
ten, and additional factory checkout equipment moved to the launch site.

The software requires a detailed understanding of the hardware being checked and the
system's function. These activities bear a similarity to BMO's automatic test equipment
software, but on a more focused scale since the checkout activity usually is confined to
the contractor's facility and the launch site.

Launch Systems (Overview). Software in launch vehicle systems maintains the sta-
bility of the vehicle during its flyout and takes inertial and other sensor information in
order to follow a preplanned launch trajectory. The software design is based on a
rigidly scheduled, cyclic sequence of events much like aircraft avionics software. This
software is usually small in program size, often fitting into a 16K-word memory and is
usually written in assembly language.

.i. F-2• ' -

*,-.f"72-' " -

• ...-. o'.~~~~~~~~~~~~~~~~~..•.'.p-.- .- .. ,. .•..-... .• ,..,.......-,• " -" % ' %-- - - ' o. . .- . ' ' ' - " "- - ' " . " - " " "• . • "

JN . " , " ., , ,. " . " , - , .. . - . . - . . ' . . - .• ' , ." . . " ' - - .. "- , € . ' . "" "' . . -

Missile Systems The development and testing of this software parallels that described
for avionics software, except that it is simpler in function for the ballistic missiles.

Again, like aircraft avionics, simulation using a hot bench (SILT!'-like facility) is per-
formed during the design and testing to establish the real-time performance. Ti
Usually, extensive IV&V is performed on missile systems. This IV&V usually includes
independent testing on separate facilities, using separate tools by IV&V contractors.

F4. CATEGORIZATION OF SOFTWARE FUNCTIONS I
The list of software functions in this appendix is based on responses to surveys per-
formed as part of software test handbook preparation, updated by a later survey during
preparation of these guidelines. This list has been reviewed by representatives of this
Air Force mission. It is possible, however, that the list is not complete, or that another
individual from the same organization would have described or categorized the software
types differently.

The number that follows each software function is the assigned software category. This
software category is 1 of 18 standard categories defined in section 2.3.2 and is used in
path 1 to determine candidate methodology selection.

F-3

.......... ,- • .•..

.4 .4. =..4. .4 . .4,4..4.4 .4 4..,

.4 . . - .4 .," --. 4 -

. .. .

A. Equipment Checkout -- pre-launch checkout, equipment self-test

SOFTWARE FUNCTIONS CATEGORY

automatic test equipment (ATE) 9
built-in-test (BIT) 9
central integrated test systems 9 ::j

B. Missile Defense -- threat detection and warning, threat evaluation

SOFTWARE FUNCTIONS CATEGORY

automatic processing 13
data base management 12
filtering and smoothing 9
guidance and control 3
message processing 8
mission data preparation 12
mission planning 15

- . real-time control 2
real-time executive 2
sensor processing 10
(sensor) tracking 5
simulation 11
situation notification 14
missile information correlation 1
mis.,ile situation analysis 15
task elvction and displays 1-i

F-4

-7."...

J i -- ;;--.... -".i .';---'- .i --. ? .;.; -; -.. - ..;. :.? -... ; -. .. .- . -.J ".."' "." 3"7 . '2 " '

MISSION
I Of

Ramze Air Development Center
- ~RAV'C Ptan,6 and execLLteA 'LeAeaLch, devetopment, .teAt and

&6etected acquJ.4ition ptog.Amm in 4uppor.t oj Comand, Cont'wL
Commication6 and Inte22gence (C31) activitieA. Technicat
and engineeA..ug 6u~ppox-t wULhin aWL, o6 tehnicat competene
iA6 potovided .to ESP P'Logvam Oddie6 (P04) and otheL ESP
etementz. The p'r2nc.2pat neincat m!AZ6on aAeaA6 a~e

* commwunttonA, etetwmagnetic guidance and contwL, aa-
* -. veittance o6 g'Lowd and av.w,6pace object, intetgence diata

eotection and havndting, in6ocmat.on 6p4ten technotogy,
iono~phetv.2 p. opagation, 6otid .6tte 4eieneea, mictomnve

* ~phy4Ze.& and etectAoi xetitbZiity, maintoiabitty and
ecinpcatibiJty.

7-- V . . - 7 77--.- .- 7 V. -. 7 - .7--

[1:2L

FILa ;ALIj

DTI

